Movement...

One of the things that drives most hobbyists crazy is when "stuff" gets blown around, covered or moved about in the aquarium. It can be because of strong current, the activity of fishes, or simply overgrown by plants. I understand the annoyance that many hobbyists feel; I recall this same aggravating feeling in many reef tanks where I had high flow and sand on the bottom- almost always a combination for annoyance! 

I mean, I get it. We have what feel is a carefully thought-out aquascape, looking exactly how we expected it would after setup. Yet, despite our ideas and thoughts, stuff moves around in the aquarium. It's something we can either accept, or modify in our aquariums, depending upon our preferences.

 

Yet, movement and "covering" of various materials by sediments, biofilms, etc., which accumulate on the substrate in natural habitats are everyday occurrences, and they help forge a very dynamic ecosystem. And they are constantly creating new opportunities for the fishes which reside in them to exploit.  

When you think about how materials "get around" in the wild aquatic habitats, there are a few factors which influence both the accumulation and distribution of them. In many topical streams, the water depth and intensity of the flow changes during periods of rain and runoff, creating significant re-distribution of the materials which accumulate on the bottom, such as leaves, branches, seed pods, and the like.

Larger, more "hefty" materials, such as branches, submerged logs, etc., will tend to move less frequently, and in many instances, they'll remain stationary, providing a physical diversion for water as substrate materials accumulate around them.

A "dam", of sorts, if you will.

And this creates known structures within streams in areas like Amazonia, which are known to have existed for many years. Semi-permanent aquatic features within the streams, which influence not only the physical and chemical environment, but the very habits and abundance of the fishes which reside there.

Most of the small stuff, like leaves, tend to move around quite a bit... One might say that the "material changes" created by this movement of materials can have significant implications for fishes. As we've talked about before, they follow the food, often existing in, and subsisting off of what they can find in these areas.

New accumulations of leaves, detritus, and other materials benefit the entire ecosystem.

In the case of our aquariums, this "redistribution" of material can create interesting opportunities to not only switch up the aesthetics of our tanks, but to provide new and unique little physical areas for many of the fishes we keep.

And yeah, the creation of new feeding opportunities for life forms at all levels is a positive which simply cannot be overstated! As hobbyists, we tend to lament changes to the aquascape of our tanks caused by things outside of our control, and consider them to be a huge inconvenience, when in reality, they're not only facsimile of very natural dynamic processes-they are fundamental to their evolution.

The benthic microfauna which our fishes tend to feed on also are affected by this phenomenon, and as mentioned above, the fishes tend to "follow the food", making this a case of the fishes adapting to a changing environment. And perhaps...maybe...the idea of fishes sort of having to constantly adjust to a changing physical environment could be some sort of "trigger", hidden deep in their genetic code, that perhaps stimulates overall health, immunity or spawning?

Something in their "programing" that says, "You're at home..." Perhaps something which triggers specific adaptive behaviors?

I find this possibility fascinating, because we can learn more about our fishes' behaviors, and create really interesting habitats for them simply by adding botanicals to our aquariums and allowing them to "do their own thing"- to break apart as they decompose, move about as we change water or conduct maintenance activities, or add new pieces from time to time.

Again, just like Nature.

We just need to "get over ourselves" on this aesthetic thing!

Another mental shift? Yeah, it is. An easy one, but one that we need make, really.

Like any environment, botanical/ leaf litter beds have their own "rhythm", fostering substantial communities of fishes. The dynamic behind this biotope can best be summarized in this interesting excerpt from an academic paper on blackwater leaf-litter communities by biologist Peter Alan Henderson, that is useful for those of us attempting to replicate these communities in our aquaria:

"..life within the litter is not a crowded, chaotic scramble for space and food. Each species occupies a sub-region defined by physical variables such as flow and oxygen content, water depth, litter depth and particle size…

...this subtle subdivision of space is the key to understanding the maintenance of diversity. While subdivision of time is also evident with, for example, gymnotids hunting by night and cichlids hunting by day, this is only possible when each species has its space within which to hide.”

In other words, different species inhabit different sections of the leaf litter beds. As aquarists, we should consider this when creating and stocking our botanical-style aquariums.

It  just makes sense, right?

 

So, when you're attempting to replicate such an environment, consider how the fishes would utilize each of the materials you're working with. For example, leaf litter areas would be an idea shelter for many juvenile fishes, catfishes, and even young cichlids to shelter among.

Submerged branches, larger seed pods and other botanicals provide territory and areas where fishes can forage for macrophytes (algal growths which occur on the surfaces of these materials). Fish selection can be influenced as much by the materials you're using to 'scape the tank as anything else, when you think about it!

And it's not just fishes, of course. It's a multitude of life forms.

There are numerous life forms which are found on ad among these materials as well, such as fungal growths, bacterial biofilms, etc. which we likely never really consider, yet are found in abundance in nature and in the aquarium, and perform vital roles in the function of the aquatic habitat.

Perhaps most fascinating  and rarely discussed in the hobby, are the unique freshwater sponges, from the genus Spongilla. Yes, you heard. Freshwater sponges! These interesting life forms attach themselves to rocks and logs and filter the water for various small aquatic organisms, like bacteria, protozoa, and other minute aquatic life forms. Some are truly incredible looking organisms!

(Spongilla lacustris Image by Kirt Onthank. Used under CC-BY SA 3.0)

Unlike the better-known marine sponges, freshwater sponges are subjected to the more variable environment of rivers and streams, and have adapted a strategy of survival. When conditions deteriorate, the organisms create "buds", known as  "gemmules", which are an asexually reproduced mass of cells capable of developing into a new sponge! The Gemmules remain dormant until environmental conditions permit them to develop once again!

Oh, cool!

To my knowledge, these organisms have never been intentionally collected for aquariums, and I suspect they are a little tricky to transport (despite their adaptability), just ike their marine cousins are. One species, Metania reticulata, is extremely common in the Brazilian Amazon. They are found on rocks, submerged branches, and even tree trunks when these areas are submerged, and remain in a dormant phase in the aforementioned gemmules during periods of desiccation!

Now, I'm not suggesting that we go and collect  freshwater sponges for aquarium use, but I am curious if they occur as "hitchhikers" on driftwood, rocks or other materials which end up in our aquariums. When you think about how important sponges are as natural "filters", one can only wonder how they might perform this beneficial role in the aquarium as well!

We've encountered them in reef tanks for many years...I wonder if they could ultimately find their way into our botanical-style aquariums as well?  Perhaps they already have. Have any of you encountered one before in your tanks?

The big takeaway from all of this: A botanical bed in our aquariums and in Nature is a physical structure, ephemeral though it may be- which functions just like an aggregation of branches, or a reef, rock piles, or other features would in the wild benthic environment, although perhaps even "looser" and more dynamic.

Stuff gets redistributed, covered, and often breaks down over time. Exactly like what happens in Nature.

Think about the possibilities which are out there, under every leaf. Every sunken branch. Every root. Every rock.

It's all brought about by the dynamic process of movement.

Perhaps instead of looking at the movement of stuff in our tanks as an annoyance, we might enjoy it a lot more if we look at it as an opportunity! An opportunity to learn more about the behaviors and life styles of our fishes and their ever-changing environment.

Stay observant. Stay creative. Stay excited. Stay open-minded...

And Stay Wet.

 

Scott Fellman

Tannin Aquatics 

 

 

 

The slow(er) road to success with fish stocking...

One of the questions which we are asked less and less these days is, 'What kinds of fishes are suitable for a botanical-style aquarium?" I think that after 6 years of pounding all of these ideas into your heads about all of the strange nuances of botanical-style aquariums, it's almost universally understood that pretty much any fishes can live in them.

On the other hand, when it comes to how we stock our tanks, nothing has really changed...however, it could. And it should, IMHO.

We spend a pretty good amount of time studying, scheming, and pondering how to create a compatible, interesting, and attractive community of fishes within our aquariums.

It's probably among the most enjoyable things that we do in the hobby, right?

As a somewhat eccentric philosopher of all things fish, one of my favorite things to ponder is stuff that we do while creating our aquariums which is- intentionally or otherwise- analogous to the factors in Nature that result in the environments and fish populations that we find so compelling.

If you're like me, you likely spend a little too much time pondering all sorts of arcane aspects of the hobby...Okay, so maybe you're NOT like me, but you probably have a rather keen interest in the way Nature operates in the wild aquatic systems of the world, and stock your aquariums accordingly.

As one who studies a lot of details about some of the habitats from which our fishes come, I can't help but occasionally wonder exactly what it is that brings fishes to a given location or niche within a environment?

Now, the first answer we're likely to proffer is the most apparent...right? I mean, they follow the food!

Fishes tend to move into new areas in search suitable food sources as part of their life cycle. And food sources often become available in habitats such as flooded forest areas after the rains come, when decomposing leaves and botanical materials begin to create (or re-activate, as the case may be) "food webs", attracting ever more complex life forms into the area.

When we create our aquariums, we take into consideration a lot of factors, ranging from the temperament and size of our fish selections, to their appearance, right? These are all important factors. However, have you ever considered what the factors are in nature which affect the composition of a fish community in a given habitat?

Like, why "x" fish is living in a particular habitat?

What adaptations has the fish made that make it uniquely suitable for this environmental niche? Further, have you thought about how we as hobbyists replicate, to some extent, the actual selection processes which occur in Nature in our quest to create the perfect community aquarium?

Now, if you're an African Cichlid lover or reef hobbyist, I'm sure you have!

Social hierarchies, spatial orientations, and allopathic processes are vital to success in those types of aquariums; you typically can't get away with just throwing in a random fish or coral and hoping it will just mix perfectly.

However, for many hobbyists who aim to construct simple "community tanks", it isn't that vital to fill specific niches and such...we probably move other factors to the forefront when thinking about possible additions to our community of fishes: Like, how cool the fish looks, how large it grows, if it has a peaceful temperament, etc. More basic stuff.

However, in the end, we almost always make selections based upon factors which we deem important...again, a sort of near-mimicry of natural processes- and how the fishes work in the habitat we've created for them.

"Unnatural selection?" Or...Is it essentially what nature's does for eons?

Oh, and what exactly is an "aquatic habitat", by the way? In short, you could say that an aquatic habitat is the physical, chemical, and biological characteristics which determine the suitability for habitation and reproduction of fishes.

Of course, these characteristics can determine which fishes are found in a given area in the wild- pretty much without exception. It's been happening for eons.

Approaching the stocking of an aquarium by determining which fishes would be appropriate for the physical characteristics of the tank is not exactly groundbreaking stuff.

However, when we evaluate this in the context of "theme", and what fish would be found within, say, an Amazonian Igarape stream or a Southeast Asian peat swamp, the idea of adding fishes to "exploit" the features of the habitat we've created is remarkably similar to the processes which occur in Nature that determine what fish are found there, and it's the ultimate expression of good tank planning, IMHO.

It's just kind of interesting to think about in that context, right?

Competition is another one of the important factors in determining  how fish populations in the wild. Specifically, competition for space, resources (e.g.; food) and mates are prevalent. In our aquariums, we do see this to some extent, right? The "alpha male" cichlid, the Pleco that gets the best cave, and the Tetra which dominates his shoal.

How we create the physical space for our fishes can have significant impact on this behavior. When good hiding spaces are at a premium, as are available spawning partners, their will be some form of social hierarchy, right?

Other environmental factors, such as  water movement, dissolved oxygen, etc. are perhaps less impactful on our community once the tank is established. However, these factors figure prominently in our decisions about the composition of, or numbers or fishes in the community, don't they?

For example, you're unlikely to keep Hillstream loaches in a near stagnant, blackwater swamp biotope aquarium, just like you'd be unlikely to keep Altum Angelfish in a fast-moving stream biotope representation. And fishes which shoal or school will, obviously, best be kept in numbers.

"Aquarium Keeping 101", again.

One factor that we typically don't have in our aquaria is predation. I know very few aquarists who would be sadistic enough to even contemplate trying to keep predators and prey in the same tank, to let them "have at it" and see what happens, and who comes out on top!

I mean, there is a lot to this stuff, isn't there?

Again, the idea of creating a tank to serve the needs of certain fishes isn't earth-shattering. Yet, the idea of stocking the tank based on the available niches and physical characteristics is kind of a cool, educational, and ultimately very gratifying process. I just think it's truly amazing that we're able to actually do this these days.

And the sequence that you stock your tank in is extremely pertinent.

I think that you could literally create a sort of "sequence" to stocking various types of fishes based on the stage of "evolution" that your aquarium is in, although the sequence might be a bit different than Nature in some cases. For example, in a more-or-less brand new aquarium, analogous in this case to a newly-inundated forest floor, their might be a lot less in the way of lower life forms, such as fungi and bacteria, until the materials begin breaking down. You'd simply have an aggregation of fresh leaves, twigs, seed pods, soils, etc. in the habitat.

So, if anything, you're likely to see fishes which are much more dependent upon  allochthonous input...food from the terrestrial environment. This is a compelling way to stock an aquarium, I think. Especially aquarium systems like ours which make use of these materials en masse.

Right from the start (after cycling, of course!), it would not be unrealistic to add fishes which feed on terrestrial fruits and botanical materials, such as Colossoma, Arowanna, Metynis, etc. Fishes which, for most aquarists of course, are utterly impractical to keep because of their large adult size and/or need for physical space!

(Pacu! Image by Rufus46, used under CC BY-SA 3.0)

Now, a lot of smaller, more "aquarium suited" fishes will also pick at these fruits and seeds, so you're not totally stuck with the big brutes if you want to go this route! Interestingly, the consumption and elimination of fruits by fishes is thought to be a major factor in the distribution of many plants in the region.

Do a little research here and you might be quite surprised about who consumes what in these habitats!

More realistically for most aquarists, I'd think that you could easily stock first with fishes like surface-dwelling (or near surface-dwelling) species, like hatchetfishes and some Pencilfishes, which are largely dependent upon terrestrial insects such as flies and ants, in Nature. In other words, they tend to "forage" or "graze" little, and are more opportunistic, taking advantage of careless insects which end up in the water of these newly-inundated environs.

I've read studies where almost 100 species were documented which feed near-exclusively on insects and arthropods from terrestrial sources in these habitats! As I mention often, if you dive a bit deeper than the typical hobbyist writings, and venture into scholarly materials and species descriptions, you'll be fascinated to read about the gut-content analysis of fishes, because they give you a tremendous insight about what to feed in the aquarium!

Continuing on, it's easy to see that, as the environments evolve, so does the fish population. And the possibilities for simulating this in the aquarium are many and are quite interesting!

Later, as materials start to decompose and are acted on by fungi and bacteria, you could conceivably add more of the "grazing" type fishes, such as Plecos, small Corydoras, Headstanders, etc.

As the tank ages and breaks in more, this would be analogous to the period of time when micro-crustaceans and aquatic insects are present in greater numbers, and you'd be inclined to see more of the "micropredators" like characins, and ultimately, small cichlids.

Interestingly, scientists have postulated that evolution favored small fishes like characins in these environments, because they are more efficient at capturing small terrestrial insects and spiders in these flooded forests than the larger fishes are!

And it makes a lot of sense, if you look at it strictly from a "density/variety" standpoint- lots of characins call these habitats home!

Then there are detritivores.

The detrivorus fishes remove large quantities of this material from submerged trees, branches, etc. Now, you might be surprised to learn that, in the wild, the gut-content analysis of almost every fish indicates that they consume organic detritus to some extent! And it makes sense...They work with the food sources that are available to them!

At different times of the year, different food sources are easier to obtain.

And, of course, all of the fishes which live in these habitats contribute to the surrounding forests by "recycling" nutrients locked up in the detritus. This is thought by ecologists to be especially important in blackwater inundated forests and meadows in areas like The Pantanal, because of the long periods of inundation and the nutrient-poor soils as a result of the slow decomposition rates.

All of this is actually very easy to replicate, to a certain extent, when stocking our aquaria. Why would you stock in this sort of sequence, when you're likely not relying on decomposing botanicals and leaves and the fungal and microbial life associated with them as your primary food source?

Well, you likely wouldn't be...However, what about the way that the fishes, when introduced at the appropriate "phase" in the tank's life cycle- adapt to the tank? Wouldn't the fishes take advantage of these materials as a supplement to the prepared foods that you're feeding them? Doesn't this impact the fishes' genetic "programming" in some fashion? Can it activate some health benefits, behaviors, etc?

I believe that it can. And I believe that this type of more natural feeding ca profoundly and positively impact our fishes' health.

I’m no genius, trust me. I don’t have half the skills many of you do but I have succeeded with many delicate “hard-to-feed” fishes over my hobby “career.” 

Why?

Because I'm really patient.

Success with this approach is simply a result of deploying "radical patience."  The practice of just moving really slowly and carefully when adding fishes to new tanks. 

It's a really simple concept.

The hard part is waiting longer to add fishes.

Wait a minimum of three weeks—and even up to a month or two if you can stand it, and you will have a surprisingly large population of micro and macro fauna upon which your fishes can forage between feedings.

Having a “pre-stocked” system helps reduce a considerable amount of stress for new inhabitants, particularly for wild fishes, or fishes that have reputations as “delicate” feeders.

And think about it. This is really a natural analog of sorts. Fishes that live in inundated forest floors (yeah, the igapo again!) return to these areas to "follow the food" once they flood.

It just takes a few weeks, really. You’ll see fungal growth. You'll see some breakdown of the botanicals brought on by bacterial action or the feeding habits of small crustaceans and fungi. If you "pre-stock", you might even see the emergence of a significant  population of copepods, amphipods, and other creatures crawling about, free from fishy predators, foraging on algae and detritus, and happily reproducing in your tank.

We kind of know this already, though- right?

This is really analogous to the tried-and-true practice of cultivating some turf algae on rocks either in or from outside your tank before adding herbivorous, grazing fishes, to give them some "grazing material." 

Radical patience yields impressive results.

It’s not always easy to try something a little out of the ordinary, or a bit against the grain of popular practice, but I commend you for even thinking about the idea. At the very least, it may give you pause to how you stock your tank in the future, like  "Herbivores first, micro predators last", or whatever thought you subscribe to. 

Allow your system to mature and develop at least some populations of fauna for these fishes to supplement their diets with. You’ll develop a whole new appreciation for how an aquarium evolves when you take this long, but very cool road.

Stay patient. Stay observant. Stay creative. Stay studious. Stay resourceful...

And Stay Wet.

 

Scott Fellman

Tannin Aquatics 

 

The Botanical-Style Aquarium: A "filter" of its own, and other biological musings...

A big thought about our botanical-style aquariums:

The aquarium-or, more specifically- the botanical materials which comprise the botanical-style aquarium "infrastructure" acts as a biological "filter system."

In other words, the botanical materials present in our systems provide enormous surface area upon which beneficial bacterial biofilms and fungal growths can colonize. These life forms utilize the organic compounds present in the water as a nutritional source.

Oh, the part about the biofilms and fungal growths sounds familiar, doesn't it?

Let's talk about our buddies, the biofilms, just a bit more. One more time. Because nothing seems as contrary to many hobbyists than to sing the praises of these gooey-looking strands of bacterial goodness!

Structurally, biofilms are surprisingly strong structures, which offer their colonial members "on-board" nutritional sources, exchange of metabolites, protection, and cellular communication. They form extremely rapidly on just about any hard surface that is submerged in water.

When I see aquarium work in which biofilms are considered a "nuisance", and suggestions that it can be eliminated by "reducing nutrients" in the aquarium, I usually cringe. Mainly, because no matter what you do, biofilms are ubiquitous, and always present in our aquariums. We may not see the famous long, stringy "snot" of our nightmares, but the reality is that they're present in our tanks regardless.

The other reality is that biofilms are something that we as aquarists typically fear because of the way they look. In and of themselves, biofilms are not harmful to our fishes. They function not only as a means to sequester and process nutrients ( a "filter" of sorts?), they also represent a beneficial food source for fishes.

Now, look, I can see rare scenarios where massive amounts of biofilms (relative to the water volume of the aquarium) can consume significant quantities of oxygen and be problematic for the fishes which reside in your tank. These explosions in biofilm growth are usually the result of adding too much botanical material too quickly to the aquarium. They're excaserbated by insufficient oxygenation/circulation within the aquarium.

These are very unusual circumstances, resulting from a combination of missteps by the aquarist.

Typically, however, biofilms are far more beneficial that they are reven emotely detrimental to our aquariums.

Nutrients in the water column, even when in low concentrations, are delivered to the biofilm through the complex system of water channels, where they are adsorbed into the biofilm matrix, where they become available to the individual cells.  Some biologists feel that this efficient method of gathering energy might be a major evolutionary advantage for biofilms which live in particularly in turbulent ecosystems, like streams, (or aquariums, right?) with significant flow, where nutrient concentrations are typically lower and quite widely dispersed.

Biofilms have been used successfully in water/wastewater treatment for well over 100 years! In such filtration systems the filter medium (typically, sand) offers a tremendous amount of surface area for the microbes to attach to, and to feed upon the organic material in the water being treated. The formation of biofilms upon the "media" consume the undesirable organics in the water, effectively "filtering" it!

Biofilm acts as an adsorbent layer, in which organic materials and other nutrients are concentrated from the water column. As you might suspect, higher nutrient concentrations tend to produce biofilms that are thicker and denser than those grown in low nutrient concentrations.

Those biofilms which grow in higher flow environments, like streams, rivers, or areas exposed to wave action, tend to be denser in their morphology. These biofilms tend to form long, stringy filaments or "streamers",which point in the direction of the flow. These biofilms are characterized by characteristic known as  "viscoelasticity." This means that they are flexible, and stretch out significantly in higher flow rate environments, and contract once again when the velocity of the flow is reduced.

Okay, that's probably way more than you want to know about the physiology of biofilms! Regardless, it's important for us as botanical-style aquarists to have at least a rudimentary understanding of these often misunderstood, incredibly useful, and entirely under-appreciated life forms.

And the whole idea of facilitating a microbiome in our aquariums is predicated upon supplying a quantity of botanical materials- specifically, leaf litter, for the beneficial organisms to colonize and begin the decomposition process. An interesting study I found by Mehering, et. al (2014) on the nutrient sequestration caused by leaf litter yielded this interesting little passage:

"During leaf litter decomposition, microbial biomass and accumulated inorganic materials immobilize and retain nutrients, and therefore, both biotic and abiotic drivers may influence detrital nutrient content."

The study determined that leaves such as oak "immobilized" nitrogen. Generally thinking, it is thought that leaf litter acts as a "sink" for nutrients over time in aquatic ecosystems.

Oh, and one more thing about leaves and their resulting detritus in tropical streams: Ecologists strongly believe that microbial colonized detritus is a more palatable and nutritious food source for detritivores than uncolonized dead leaves. The microbial growth which occurs on the leaves and their resulting detritus increases the nutritional quality of leaf detritus, because the microbial biomass on the leaves is more digestible than the leaves themselves (because of lignin, etc.).

Okay, great. I've just talked about decomposing leaves and stuff for like the 11,000th time in "The Tint"; so...where does this leave us, in terms of how we want to run our aquariums?

Let's summarize:

1) Add a significant amount of leaf litter, twigs, and botanicals to your aquarium as part of the substrate.

2) Allow biofilms and fungal growths to proliferate.

3) Feed your fishes well. It's actually "feeding the aquarium!"

4) Don't go crazy siphoning out every bit of detritus.

Let's look at each of these points in a bit more detail.

First, make liberal use of leaf litter in your aquarium. I'd build up a layer anywhere from 1"-4" of leaves. Yeah, I know- that's a lot of leaves. Initially, you'll have a big old layer of leaves, recruiting biofilms and fungal growths on their surfaces. Ultimately, it will decompose, creating a sort of "mulch" on the bottom of your aquarium, rich in detritus, providing an excellent place for your fishes to forage among. 

Allow a fair amount of indirect circulation over the top of your leaf litter bed. This will ensure oxygenation, and allow the organisms within the litter bed to receive an influx of water (and thus, the dissolved organics they utilize). Sure, some of the leaves might blow around from time to time- just like what happens in Nature. It's no big deal- really!

The idea of allowing biofilms and fungal growths to colonize your leaves and botanicals, and to proliferate upon them simply needs to be accepted as fundamental to botanical-style aquarium keeping. These organisms, which comprise the biome of our aquariums, are the most important "components" of the ecosystems which our aquariums are.

I'd be remiss if I didn't at least touch on the idea of feeding your aquarium. Think about it: When you feed your fishes, you are effectively feeding all of the other life forms which comprise this microbiome. You're "feeding the aquarium." When fishes consume and eliminate the food, they're releasing not only dissolved organic wastes, but fecal materials, which are likely not fully digested. The nutritional value of partially digested food cannot be understated. Many of the organisms which live within the botanical bed and the resulting detritus will assimilate them.

Now, we could go on and on about this topic; there is SO much to discuss. However, let's just agree that feeding our fishes is another critical activity which provides not only for our fishes' well-being, but for the other life forms which create the ecology of the aquarium.

And, let's be clear about another thing: Detritus, the nemesis of many aquarists- is NOT our enemy. We've talked about this for several years now, and I cannot stress it enough: To remove every bit of detritus in our tanks is to deprive someone, somewhere along the food chain in our tanks, their nutritional source. And when you do that, imbalances occur...You know, the kinds which cause "nuisance algae" and those "anomalous tank crashes."

The definition of this stuff, as accepted in the aquarium hobby, is kind of sketchy in this regard; not flattering at the very least:

"detritus is dead particulate organic matter. It typically includes the bodies or fragments of dead organisms, as well as fecal material. Detritus is typically colonized by communities of microorganisms which act to decompose or remineralize the material."

Shit, that's just bad branding.

The reality is that this not a "bad" thing. Detritus, like biofilms and fungi, is flat-out misunderstood in the hobby.

Could there be some "upside" to this stuff? 

Of course there is. 

I mean, even in the above the definition, there is the part about being "colonized by communities of microorganisms which act to decompose or remineralize..."

It's being processed. Utilized. What do these microorganisms do? They eat it...They render it inert. And in the process, they contribute to the biological diversity and arguably even the stability of the system. Some of them are utilized as food by other creatures. Important in a closed system, I should think.

This is really important. It's part of the biological operating system of our botanical-style aquariums. I cannot stress this enough. 

Now, I realize that the idea of embracing this stuff- and allowing it to accumulate, or even be present in your system- goes against virtually everything we've been indoctrinated to believe in about aquarium husbandry. Pretty much every article you see on this stuff is about its "dangers", and how to get it out of your tank. I'll say it again- I think we've been looking at detritus the wrong way for a very long time in the aquarium hobby, perceiving it as an "enemy" to be feared, as opposed to the "biological catalyst" it really is!

In essence, it's organically rich particulate material that provides sustenance, and indeed, life to many organisms which, in turn, directly benefit our aquariums.

We've pushed this narrative many times here, and I still think we need to encourage hobbyists to embrace it more.

Yeah, detritus.

Okay, I'll admit that detritus, as we see it, may not be the most attractive thing to look at in our tanks. I'll give you that. It literally looks like a pile of shit! However, what we're talking about allowing to accumulate isn't just fish poop and uneaten food. It's broken-down materials- the end product of biological processing.  And, yeah, a wide variety of organisms have become adapted to eat or utilize detritus.

There is, of course, a distinction.

One is the result of poor husbandry, and of course, is not something we'd want to accumulate in our aquariums. The other is a more nuanced definition. 

As we talk about so much around here- just because something looks a certain way doesn't mean that it alwaysa bad thing, right?

What does it mean? Take into consideration why we add botanicals to our tanks in the first place. Now, you don't have to have huge piles of the stuff littering your sandy substrate. However, you could have some accumulating here and there among the botanicals and leaves, where it may not offend your aesthetic senses, and still contribute to the overall aquatic ecosystem you've created.

If you're one of those hobbyists who allows your leaves and other botanicals to break down completely into the tank, what really happens? Do you see a decline in water quality in a well-maintained system? A noticeable uptick in nitrate or other signs? Does anyone ever do water tests to confirm the "detritus is dangerous" theory, or do we simply rely on what "they" say in the books and hobby forums?

Is there ever a situation, a place, or a circumstance where leaving the detritus "in play" is actually a benefit, as opposed to a problem?

I think so. Like, almost always.

Yes, I know, we're talking about a closed ecosystem here, which doesn't have all of the millions of minute inputs and exports and nuances that Nature does, but structurally and functionally, we have some of them at the highest levels (ie; water going in and coming out, food sources being added, stuff being exported, etc.).

There is so much more to this stuff than to simply buy in unflinchingly to overly-generalized statements like, "detritus is bad."

The following statement may hurt a few sensitive people. Consider it some "tough love" today: 

If you're not a complete incompetent at basic aquarium husbandry, you won't have any issues with detritus being present in your aquarium.

Just:

Don't overstock.

Don't overfeed.

Don't neglect regular water exchanges.

Don't fail to maintain your equipment.

Don't ignore what's happening in your tank.

This is truly not "rocket science." It's "Aquarium Keeping 101."

And it all comes full circle when we talk about "filtration" in our aquariums.

People often ask me, "What filter do you use use in a botanical-style aquarium?" My answer is usually that it just doesn't matter.  You can use any type of filter. The reality is that, if allowed to evolve and grow unfettered, the aquarium itself- all of it- becomes the "filter." 

You can embrace this philosophy regardless of the type of filter that you employ.

My sumps and integrated filter compartments in my A.I.O. tanks are essentially empty.

I may occasionally employ some activated carbon in small amounts, or throw some "Shade" sachets in there if I am feeling it- but that's it. The way I see it- these areas, in a botanical-style aquarium, simply provide more water volume, more gas exchange; a place for bacterial attachment (surface area), and perhaps an area for botanical debris to settle out. Maybe I'll remove them, if only to prevent them from slowing down the flow rate of my return pumps.

But that's it. 

A lot of people are initially surprised by this. However, when you look at it in the broader context of botanical style aquariums as miniature ecosystems, it all really makes sense, doesn't it? The work of these microorganisms and other life forms takes place throughout the aquarium.

I admit, there was a time when I was really fanatical about making sure every single bit of detritus and fish poop and all that stuff was out of my tanks. About undetectable nitrate. I was especially like that in my earlier days of reef keeping, when it was thought that cleanliness was the shit!

It wasn't until years into my reef keeping work, and especially in my coral propagation work, that I begin to understand the value of food, and the role the it plays in aquatic ecosystems as a whole. And that "food" means different things to different aquatic organisms. The idea of scrubbing and removing every single trace of what we saw as "bad stuff" from our grow-out raceways essentially deprived the corals and supporting organisms of an important natural food source.

We'd fanatically skim and remove everything, only to find out that...our corals didn't look all that good. We'd compensate by feeding more heavily, only to continue to remove any traces of dissolved organics from the water...

It was a constant struggle- the metaphorical "hamster wheel"- between keeping things "clinically clean" and feeding our animals. We were super proud of our spotless water. We had a big screen when you came into our facility showing the parameters in each raceway. Which begged the question: Were we interested in creating sterile water, or growing corals? 

Eventually, it got through my thick skull that aquariums- just like the wild habitats they represent-are not spotless environments, and that they depend on multiple inputs of food, to feed the biome at all levels. This meant that scrubbing the living shit (literally) out of our aquariums was denying the very biotia which comprised our aquariums their most basic needs.

That little "unlock" changed everything for me.

Suddenly, it all made sense. 

This has carried over into the botanical-style aquarium concept: It's a system that literally relies on the biological material present in the system to facilitate food production, nutrient assimilation, and reproduction of life forms at various trophic levels.

It's changed everything about how I look at aquarium management and the creation of functional closed aquatic ecosystems. 

It's really put the word "natural" back into the aquarium keeping parlance for me. The idea of creating a multi-tiered ecosystem, which provides a lot of the requirements needed to operate successfully with just a few basic maintenance practices, the passage of time, a lot of patience, and careful observation.

It means adopting a different outlook, accepting a different, yet very beautiful aesthetic. It's about listening to Nature instead of the asshole on Instagram with the flashy, gadget-driven tank. It's not always fun at first for some, and it initially seems like you're somehow doing things wrong.

It's about faith. Faith in Mother Nature, who's been doing this stuff for eons.

It's about nuance.

It's about looking at things a bit different that we've been "programmed" to do in the aquarium hobby for so long. It's about not being afraid to question the reasons why we do things a certain way in the hobby, and to seek ways to evolve and change practices for the benefits of our fishes. 

It takes time to grasp this stuff. However, as with so many things that we talk about here, it's not revolutionary...it's simply an evolution in thinking about how we conceive, set up, and manage our aquariums. 

 

Sure, the aquairum is a "filter" of sorts, if you want to label it as such. However, it's so much more: A small, evolving ecosystem, relying on natural processes to bring it to life.

Wrap you head around that.

It might just change everything in the hobby for you.

Stay open-minded. Stay thoughtful. Stay bold. Stay curious. Stay diligent. Stay observant...

And Stay Wet.

 

Scott Fellman

Tannin Aquatics 

 

 

 

 

What our fishes eat...The wonder of food webs.

Yes, I admit that we talk about some rather obscure topics around here. Yet, many of these topics are actually pretty well known, and even well-understood by science. We just haven't consciously applied them to our aquarium work...yet.

One of the topics that we talk about a lot are food webs. To me, these are fascinating, fundamental constructs which can truly have important influence on our aquariums.

So, what exactly is a food web?

 

A food web is defined by aquatic ecologists as a series of "trophic connections" (ie; feeding and nutritional resources in a given habitat) among various species in an aquatic community. 

All food chains and webs have at least two or three of these trophic levels. Generally, there are a maximum of four trophic levels. Many consumers feed at more than one trophic level.

So, a trophic level in our case would go something like this: Leaf litter, bacteria/fungal growth, crustaceans...

In the wild aquatic habitats we love so much, food webs are vital to the organisms which live in them. They are an absolute model for ecological interdependencies and processes which encompass the relationship between the terrestrial and aquatic environments.

In many of the blackwater aquatic habitats that we're so obsessed with around here, like the Rio Negro, for example, studies by ecologists have determined that the main sources of autotrophic sources are the igapo, along with aquatic vegetation and various types of algae. (For reference, autotrophs are defined as organisms that produce complex organic compounds using carbon from simple substances, such as CO2, and using energy from light (photosynthesis) or inorganic chemical reactions.)

Hmm. examples would be phytoplankton!

Now, I was under the impression that phytoplankton was rather scarce in blackwater habitats. However, this indicates to scientists is that phytoplankton in blackwater trophic food webs might be more important than originally thought! 

Now, lets get back to algae and macrophytes for a minute. Most of these life forms enter into food webs in the region in the form of...wait for it...detritus! Yup, both fine and course particular organic matter are a main source of these materials. I suppose this explains why heavy accumulations of detritus and algal growth in aquaria go hand in hand, right? Detritus is "fuel" for life forms of many kinds.

In Amazonian blackwater rivers, studies have determined that the aquatic insect abundance is rather low, with most species concentrated in leaf litter and wood debris, which are important habitats.  Yet, here's how a food web looks in some blackwater habitats : Studies of blackwater fish assemblages indicated that many fishes feed primarily on burrowing midge larvae (chironomids, aka "Bloodworms" ) which feed mainly with organic matter derived from terrestrial plants!

And of course, allochtonous inputs (food items from outside of the ecosystem), like fruits, seeds, insects, and plant parts, are important food sources to many fishes.  Many midwater characins consume fruits and seeds of terrestrial plants, as well as terrestrial insects.

Insects in general are really important to fishes in blackwater ecosystems. In fact, it's been concluded that the the first link in the food web during the flooding of forests is terrestrial arthropods, which provide a highly important primary food for many fishes.

These systems are so intimately tied to the surrounding terrestrial environment. Even the permanent rivers have a strong, very predictable "seasonality", which  provides fruits, seeds, and other terrestrial-originated food resources for the fishes which reside in them. It's long been known by ecologists that rivers with predictable annual floods have a higher richness of fish species tied to this elevated rate of food produced by the surrounding forests.

 

 

And of course, fungal growths and bacterial biofilms are also extremely valuable as food sources for life forms at many levels, including fishes. The growth of these organisms is powered by...decomposing leaf litter! 

Sounds familiar, huh?

So, how does a leaf break down? It's a multi-stage process which helps liberate its constituent compounds for use in the overall ecosystem. And one that is vital to the construction of a food web.

The first step in the process is known as leaching, in which nutrients and organic compounds, such as sugars, potassium, and amino acids dissolve into the water and move into the soil.The next phase is a form of fragmentation, in which various organisms, from termites (in the terrestrial forests) to aquatic insects and shrimps (in the flooded forests) physically break down the leaves into smaller pieces. 

As the leaves become more fragmented, they provide more and more surfaces for bacteria and fungi to attach and grow upon, and more feeding opportunities for fishes!

Okay, okay, this is all very cool and hopefully, a bit interesting- but what are the implications for our aquariums? How can we apply lessons from wild aquatic habitats vis a vis food production to our tanks? 

This is one of the most interesting aspects of a botanical-style aquarium: We have the opportunity to create an aquatic microcosm which provides not only unique aesthetics- it provides nutrient processing, and to some degree, a self-generating population of creatures with nutritional value for our fishes, on a more-or-less continuous basis.

Incorporating botanical materials in our aquariums for the purpose of creating the foundation for biological activity is the starting point. Leaves, seed pods, twigs and the like are not only "attachment points" for bacterial biofilms and fungal growths to colonize, they are physical location for the sequestration of the resulting detritus, which serves as a food source for many organisms, including our fishes.

Think about it this way: Every botanical, every leaf, every piece of wood, every substrate material that we utilize in our aquariums is a potential component of food production!

The initial setup of your botanical-style aquarium will rather easily accomplish the task of facilitating the growth of said biofilms and fungal growths. There isn't all that much we have to do as aquarists to facilitate this but to simply add these materials to our tanks, and allow the appearance of these organisms to happen. 

 

You could add pure cultures of organisms such as Paramecium, Daphnia, species of copepods (like Cyclops), etc. to help "jump start" the process, and to add that "next trophic level" to your burgeoning food web. 

In a perfect world, you'd allow the tank to "run in" for a few weeks, or even months if you could handle it, before adding your fishes- to really let these organisms establish themselves. And regardless of how you allow the "biome" of your tank to establish itself, don't go crazy "editing" the process by fanatically removing every trace of detritus or fragmented botanicals.

When you do that, you're removing vital "links" in the food chain, which also provide the basis for the microbiome of our aquariums, along with important nutrient processing.

So, to facilitate these aquarium food webs, we need to avoid going crazy with the siphon hose! Simple as that, really!

Yeah, the idea of embracing the production of natural food sources in our aquariums is elegant, remarkable, and really not all that surprising. They will virtually spontaneously arise in botanical-style aquariums almost as a matter of course, with us not having to do too much to facilitate it.

It's something that we as a hobby haven't really put a lot of energy in to over the years. I mean, we have spectacular prepared foods, and our understanding of our fishes' nutritional needs is better than ever.

Yet, there is something tantalizing to me about the idea of our fishes being able to supplement what we feed. In particular, fry of fishes being able to sustain themselves or supplement their diets with what is produced inside the habitat we've created in our tanks!

 

A true gift from Nature. 

I think that we as botanical-style aquarium enthusiasts really have to get it into our heads that we are creating more than just an aesthetic display. We need to focus on the fact that we are creating functional microcosms for our fishes, complete with physical, environmental, and nutritional aspects.

Food production- supplementary or otherwise- is something that not only is possible in our tanks; it's inevitable.

I firmly believe that the idea of embracing the construction (or nurturing) of a "food web" within our aquariums goes hand-in-hand with the concept of the botanical-style aquarium. With the abundance of leaves and other botanical materials to "fuel" the fungal and microbial growth readily available, and the attentive husbandry and intellectual curiosity of the typical "tinter", the practical execution of such a concept is not too difficult to create.

We are truly positioned well to explore and further develop the concept of a "food web" in our own systems, and the potential benefits are enticing! 

Work the web- in your own aquarium!

Stay curious. Stay observant. Stay creative. Stay diligent. Stay open-minded...

And Stay Wet.

 

Scott Fellman

Tannin Aquatics 

 

Epiphytes, macrophytes, allochthonous input, and other "natural" fish foods...

As a hardcore enthusiast of the blackwater/botanical-style aquarium, you're more than well-attuned to the nuances involved in managing a system filled with decomposing leaves, seed pods, wood, etc. And you're keenly aware of many of the physiological/ecological  benefits that have been attributed to the use of these materials in the aquarium. However, I am willing to bet that most of us have not really considered the "nutritional" aspects of both botanicals and the life forms they foster as an important part of the "functional/aesthetic" dynamic we've touched on before.

Let's consider some of the types of food sources that our fishes might utilize in the wild habitats that we try so hard to replicate in our aquariums, and perhaps develop a greater appreciation for them when they appear in our tanks. Perhaps we will even attempt to foster and utilize them to our fishes' benefits in unique ways? 

 

One of the important food resources in natural aquatic systems are what are known as macrophytes- aquatic plants which grow in and around the water, emerged, submerged, floating, etc. Not only do macrophytes contribute to the physical structure and spatial organization of the water bodies they inhabit, they are primary contributors to the overall biological stability of the habitat, conditioning the physical parameters of the water. Of course, anyone who keeps a planted aquarium could attest to that, right? 

One of the interesting things about macrophytes is that, although there are a lot of fishes which feed directly upon them, the plants themselves are perhaps most valuable as a microhabitat for algae, zooplankton, and other organisms which fishes feed on. Small aquatic crustaceans seek out the shelter of plants for both the food resources they provide (i.e.; zooplankton, diatoms) and for protection from predators (yeah, the fishes!).

So, plants in the aquarium have been valued by aquarists "since the beginning" for all sorts of benefits- that's not really groundbreaking. I personally think that one of the more interesting functions of plants in the aquarium is to serve as this sort of "feeding ground" for fishes in all stages of their existence. Oh, yeah, they look cool, too! 

Perhaps most interesting to us blackwater/botanical-style aquarium people are epiphytes. These are organisms which grow on the surface of plants or other substrates and derive their nutrients from the surrounding environment. They are important in the nutrient cycling and uptake in both nature and the aquarium, adding to the biodiversity, and serving as an important food source for many species of fishes.

In the case of our aquatic habitats, like streams, ponds, and inundated forests, epiphytes are abundant, and many fishes will spend large amounts of time foraging the biocover on tree trunks, branches, leaves, and other botanical materials. Although most animals use leaves and tree branches for shelter and not directly as a food item, grazing on this epiphytic growth is very important. Some organisms, such as nematodes and chironomids ("Bloodworms!") will dig into the leaf structures and feed on the tissues themselves, as well as the fungi and bacteria found in and among them. These organisms, in turn, become part of the diet for many fishes.

And the resulting detritus produced by the "processed" and decomposing pant matter is considered by many aquatic ecologists to be an extremely significant food source for many fishes, especially in areas such as Amazonia and Southeast Asia, where the detritus is considered an essential factor in the food webs of these habitats. And of course, if you observe the behavior of many of your fishes in the aquarium, such as characins, cyprinids, Loricarids, and others, you'll see that in between feedings, they'll spend an awful lot of time picking at "stuff" on the bottom of the tank. In a botanical style aquarium, this is a pretty common occurrence, and I believe an important benefit of this type of system. 

I am of the opinion that a botanical-style aquarium, complete with its decomposing leaves and seed pods, can serve as a sort of "buffet" for many fishes- even those who's primary food sources are known to be things like insects and worms and such. Detritus and the organisms within it can provide an excellent supplemental food source for our fishes! It's well known that in many habitats, like inundated forests, etc., fishes will adjust their feeding strategies to utilize the available food sources at different times of the year, such as the "dry season", etc. And it's also known that many fish fry feed actively on bacteria and fungi in these habitats...so I suggest one again that a blackwater/botanical-style aquarium could be an excellent sort of "nursery" for many fish species! 

You'll often hear the term "periphyton" mentioned in a similar context, and I think that, for our purposes, we can essentially consider it in the same manner as we do "epiphytic matter." Periphyton is essentially a "catch all" term for a mixture of cyanobacteria, algae, various microbes, and of course- detritus, which is found attached or in extremely close proximity to various submerged surfaces. Again, fishes will graze on this stuff constantly.

And then, of course, there's the "allochthonous input" that we've talked about so much here: Foods from the surrounding environment, such as flowers, fruits, terrestrial insects, etc. These are extremely important foods for many fish species that live in these habitats. We mimic this process when we feed our fishes prepared foods, as stuff literally "rains from the sky!" Now, I think that what we feed to our fishes directly in this fashion is equally as important as how it's fed.

I'd like to see much more experimentation with foods like ants, fruit flies, and other winged insects. Of course, I can hear the protests already: "Not in MY house, Fellman!" I get it. I mean, who wants a plague of winged insects getting loose in their suburban home because of some aquarium feeding experiment gone awry, right?

That being said, I would encourage some experimentation with ants and the already fairly common wingless fruit flies. Can you imagine one day recommending an "Ant Farm" as a piece of essential aquarium food culturing equipment? Why not right?

As many of you may recall, I've often been amused by the concerns many hobbyists express when a new piece of driftwood is submerged in the aquarium, often resulting in an accumulation of fungi, algal growth and biofilm. I realize this stuff looks pretty shitty to most of us, particularly when we are trying to set up a super-cool aquascaped tank. That being said, I think we need to let ourselves embrace this. I think that those of us who maintain blackwater. botanical-style aquariums have made the "mental shift" to understand, accept, and even appreciate the appearance of this stuff.

When you start seeing your fishes "graze" casually on the materials that pop up on your driftwood and botanicals, you start realizing that, although it might not look like the aesthetics we had in mind, it is a beautiful thing to our fishes. And this made me think that an "evolved" preparation technique for driftwood might be to "age" it in a large aquarium that also serves as an acclimation system for certain fishes. For example, fishes like Headstanders (Chilodus punctatus) and various loaches, catfishes, and others, would be excellent additions to this "driftwood prep tank." You could get the benefit of having the gunky stuff accumulate on the wood outside of your main display (if it bothers you, of course), while helping acclimate some cool fishes to captivity!

Just throwing the idea out there.

And of course, we've talked before about the "botanical nursery" concept- creating an aquarium for fish fry that has a large quantity of decomposing botanicals and leaves to foster the production of these materials, which serve as supplemental food for your fish fry. I have done this before myself and can attest to its viability. You fishes will have a constant supply of "natural" foods to supplement what you are feeding them in the early phases of their life. Learn to make peace with your detritus! 

This little discussion has probably not created any earth-shattering "new" developments, but I believe that it has at least looked at a few of the terms you see bandied about now and again in hobby literature, perhaps clarifying their significance to us. And I think it's really about us understanding what happens in nature and how we can work with it instead of against it, taking advantage of the food sources that she provides to our fishes when we don't rush off for the algae scraper and siphon hose before considering the upside!

Another "mental shift", I suppose...one which many of you have already made, no doubt. I certainly look forward to seeing many examples of us utilizing "what we've got" to the advantage of our fishes! 

Stay bold. Stay open-mined. Stay interested. Stay creative. Stay engaged.

And Stay Wet.

 

Scott Fellman

Tannin Aquatics