For the love of weird substrates...

One of the "cornerstones" of our botanical-method aquarium practice is the use of substrate. Specifically, substrate materials which can influence- or make it easier to influence- water chemistry in the aquarium, as well as to help foster a "microbiome" of small organisms which will provide ecological diversity for the system.

Substrates, IMHO, are one of the most often-overlooked components of the aquarium. We tend to just add a bag of  "_____________" to our tanks and move on to the "more exciting" stuff like rocks and "designer" wood. It's true! Other than planted aquarium enthusiasts, the vast majority of hobbyists seem to have little more than a passing interest in creating and managing a specialized substrate or associated ecology.

 

A real pity, especially for those of us who are interested in botanical-method aquariums, which replicate natural aquatic habitats where soils and geology play a HUGE role in influencing the environmental parameters of these ecosystems. And in the hobby, we've largely overlooked the benefits and possibilities which specialized substrates can offer.

So I started to experiment with materials to recreate some of the characteristics of wild aquatic habitats which fascinated me. And an obsession was born.

I started playing with substrates mainly because I couldn't find exactly what I was looking for on the market. This is not some indictment of the major substrate manufacturers out there...I LOVE almost all of them and use and happily recommend ones that I like. I'm obsessed with substrates. I think that the companies which produce them are among the coolest of the cool aquatics industry brands. If I wasn't doing this botanical thing with Tannin, I'd probably have started a company that specializes in substrates for aquariums. Seriously.

And the fact is, the major manufacturers need to market products that more than like 8 people are interested in. It's unreasonable to think that they'd devote precious resources to creating a product that would be geared to such a tiny target. 

And of course, being one of those 8 people who are geeked-out about weird substrates, I decided that I'd "scratch my own itch" (as we did with the botanical thing..) and formulate and create some of my own. Thus, the NatureBase product line was born!

I realized that the specialized world which we operate in embraces some different ideas, unusual aesthetics, and is fascinated by the function of the environments we strive to replicate. These are important distinctions between what we are doing with substrates at Tannin, and what the rest of the aquarium hobby is doing.

Our NatureBase line is not intended to supersede or completely replace the more commonly available products out there as your "standard" aquarium substrate, because: a) they're more expensive, b) they're not specifically "aesthetic enhancements", c) they are not intended to be planted aquarium substrates, and d) because of their composition, they'll add some turbidity and tint to the aquarium water, at least initially (not everyone could handle THAT!)

So, right there, those factors have significantly segmented our target market...I mean, we're not trying to be the aquarium world's "standard substrate", they weren't formatted to grow aquatic plants, we're not marketing them just for the cool looks, and we can't emphasize enough that they will make your water a bit turbid when first submerged. If you have fishes which dig, or which like to "work" the substrate, you may see a near-continuous turbidity in your aquarium!

Oh, joy.

Those factors alone will take us out of contention for large segments of the market!

This is important to grasp.

I mean, these substrates are intended to be used in more natural, botanical-style/biotope-inspired aquariums. Our first two releases, "Igapo" and "Varzea", are specific to the creation of a type of "cyclical" terrestrial/aquatic feature. They do exactly what I wanted them to do, and they were specifically intended for use in specialized set ups, like the "Urban Igapo" idea we've been talking about for a long time here, as well as brackish water mangrove environments, etc.

Let's touch on the "aesthetic" part for a minute.

Most of our NatureBase substrates have a significant percentage of clays and sediments in their formulations. These materials have typically been something that aquarists have avoided, because they will cloud the water for a while, and often impart a bit of color. We also have some botanical components in a few of our substrates, because they are intended to be "terrestrial" substrates for a while before being flooded...and when this stuff is first wetted, some of it will float.

And that means that you're going to have to net it out, or let your filter take it out. You simply won't have that "issue" with your typical bag of aquarium sand!

Shit, you're probably just frothing right now, waiting to cloud and dirty up your aquariums with this stuff, huh?

No?

I can't for the life of me figure out why not? ;)

Remember, some of these substrates were formulated for a very specific purpose: To replicate the terrestrial soils which are seasonally inundated in the wild. As such, these products simply won't look or act like your typical aquarium substrate materials!

Scared off completely yet? I hope not.

Why include sediments and clays in our mixes? 

Well, for one thing, sediments are an integral part of the natural substrates in the habitats from which our fishes come. So, they're integral to our line. In fact, I suppose you'd best classify NatureBase products as "sedimented substrates."

Think about this: Many of our favorite habitats are forest floors and meadows which undergo periodic flooding cycles in the Amazon, which results in the creation of aquatic habitats for a remarkable diversity of fish species.

Depending on the type of water that flows from the surrounding rivers, the characteristics of the flooded areas may vary. Another important impact is the geology of the substrates over which the rivers and streams pass. This results in differences in the physical-chemical properties of the water.

In the Amazon, areas flooded by rivers of black or clear waters, with acid pH and low sediment load, in addition to being nutritionally poor, are called “igapó."

The flooding often lasts for several weeks or even several months, and the plants and trees need special biochemical adaptations to be able to survive the lack of oxygen around their roots. We've talked about this a lot here over the years.

 

Forest floor soils in tropical areas are known by soil geologists as "oxisols", and have varying amounts of clay, sediments, minerals like quartz and silica, and various types of organic matter. So it makes sense that when flooded, these "ingredients" will have significant impact on the aquatic environment. This "recipe" is not only compositionally different than typical "off-the-shelf" aquarium sands and substrates- it looks and functions differently, too.

YOU DON'T RINSE THEM BEFORE USE!

You CAN wet them right away; you don't have to do a "wet/dry season" igapo-style tank with them.  However, you should be ready for some cloudy water for a week or more! And again, if you have fishes which like to "work" the substrate, it will be a near-constant thing, the degree to which it will be is based on the habits of the fishes you keep.

 

And that's where a lot of people will metaphorically "leave the room."Turbid, darker water is a guaranteed "freak out" for a super-high  high percentage of aquarists. 

So, yeah, you'll have to make a mental shift to appreciate a different look and function.

And many hobbyists simply can't handle that. I've been extremely up front with this stuff since the introduction of these substrates, to ward off the, "I added NatureBase to my tank and it looks like a cloudy mess! This stuff is SHIT!" type of emails that inevitably come when people don't read up first before they purchase the stuff. (And trust me- the fact that you're even reading this blog, or listening to this podcast puts you in the tiniest minority of aquarium hobbyists!)

Let's talk a bit about how to "live" with these substrates. 

There are a lot of different ways to use these substrates in all sorts of tanks. I mean, if you want some of the benefits and want to geek out and experiment with them, you can use a "sand cap" of whatever conventional substrate you prefer on top, and likely limit the turbidity somewhat, much like the practice of aquarists who employ "dirted" substrates do.

Oh, and the plant thing...

We're asked a LOT if these substrates can grow aquatic plants. Now, although they were intended to facilitate the growth of terrestrial plants, like grasses, the fact is, both our customers and ourselves have seen pretty damn good plant growth in tanks using this stuff!

Our Igapo and Varzea substrates mimic sandy acidic soils that have a low nutrient content. And, as you know, the color and acidity of the floodwater is due to the acidic organic humic substances (tannins) that dissolve into it. The acidity from the water translates into acidic soils, which makes sense, right?

Now, I admit, I am NOT a geologist, and I'm not expert in soil science. I know enough to realize that, in order to replicate the types of habitats I am fascinated with, it required different materials. If you ask me, "Will this fish do well with this materials?" or, "Can I grow "Cryptocoryne in this?", or "Does this make a good substrate for shrimp tanks?" I likely won't have a perfect answer. Sorry.

Periodically, plant enthusiasts will ask me about the "cation exchange capacity" of our substrate. Cation Exchange Capacity (CEC) is the ability of a material to absorb positively-charged nutrient ions. This means the substrate will hold nutrients and make them available for the plant roots, and therefore, plant growth. CEC measures the amount of nutrients, more specifically, positivity changed ions, which a substrate can hold onto/store for future use by aquatic plants.

Thus, a "high CEC" is important to many aquatic plant enthusiasts in their work.  While it means that the substrate will hold nutrients and make them available for the plant roots. it doesn't indicate the amount of nutrients the substrate contains. 

For reference, scientists measure cation exchange capacity (CEC) in milliequivalents per 100 grams ( meq/100g).

To really get "down and dirty" to analyze substrates scientifically, CEC determinations are often done by a process called "Method 9081A of EPA SW- 846." What the....? CEC extractions are often also analyzed on ICP-OES systems. A rather difficult and pretty expensive process, with equipment and methods that are not something casual hobbyists can easily replicate!

As you might suspect, CEC varies widely among different materials. Sand, for instance, has a CEC less than 1 meq/100 g. Clays tend to be over 30 meq/100 g. Stuff like natural zeolites are around 100 meq/100g! Soils and humus may have CEC up to 250 meq/100g- that's pretty serious!

What nutrients are we talking about here? The most common ones which come into play in the context of CEC are iron, potassium, calcium and magnesium. So, if you're into aquatic plants, high CEC is a good thing!

Of course, this is where the questions arise around the substrates we play with.

It makes sense, right?

Our "Nature Base" substrates do contain materials such as clays and silts, which could arguably be considered "higher CEC" materials, because they're really fine- and because higher surface area generally results in a higher CEC. The more surface area there is, the more potential bonding sites there are for the exchange to take place. Alas, nothing is ever exactly what we hope it should be in this hobby, and clays are often not all that high in their CEC "ratings."

Now, the "Nature Base" substrates are what we like to call “sedimented substrates”, because they are not just sand, or pellets of fired clays, etc. They are a mix of materials, and DO also have some terrestrial soils in the mix, too, which are also likely higher in CEC. And no, we haven't done CEC testing with our substrates...It's likely that in the future, some enthusiastic and curious scientist/hobbyist might just do that, of course!

Promising, from a CEC standpoint, I suppose!

However, again, I must emphasize that they were really created to replicate the substrate materials found in the igapo and varzea habitats of South America, and the overall habitat- more "holistically conceived"-not specifically for plant growth. And, in terrestrial environments like the seasonally-inundated igapo and varzea, nutrients are often lost to volatilization, leaching, erosion, and runoff..

So, it's important for me to make it clear again that these substrates are more representative of a terrestrial soil. Interestingly, the decomposition of detritus and leaves and such in our botanical-method aquariums and "Urban Igapo" displays is likely an even larger source of “stored” nutrients than the CEC of the substrate itself, IMHO. Thus, they will provide a home for beneficial bacteria- breaking down organics and helping to make them more available for plant growth. 

Perhaps that's why aquatic plants grow so well in botanical-method aquariums?

Yeah, the stuff DOES grow aquatic and riparian plants and grasses quite well, in our experience! Yet, again- I would not refer to them specifically as "aquatic plant substrates." They're not being released to challenge or replace the well-established aquatic plant soils out there. They're not even intended to be compared to them!

Remember, our "Igapo" and "Varzea" substrates are intended to start out life as "terrestrial" materials, gradually being inundated as we bring on the "wet season." And because of the clay and sediment content of these substrates, you'll see some turbidity or cloudiness in the water. It won't immediately be crystal-clear- just like in Nature. That won't excite a typically planted aquarium lover, for sure. 

I can't stress it often enough: With our emphasis on the "wholistic" application of our substrate, our focus is on the "big picture" of these closed aquatic ecosystems.

I'll be the first to tell you that, while I have experimented with many species of plants, inverts, and fishes with these substrates, I can't tell you that every single fish or plant will like them. You'll simply have to experiment!

Well, shit- that's not something that you typically hear an aquarium hobby brand tell you to do with their products every day, huh? Like, I'm not going to make all sorts of generalized statements about everything I think that these products can do. It would be very unhelpful. I'd rather focus on how they perform in the types of systems in which they were intended to work in, and what the possible downsides could be!

The whole point here is that these substrates are perfect for a whole range of applications. They're not "the greatest substrates ever made!" or anything like that. However, they are super useful for replicating the soils of some of our favorite aquatic habitats. 

And for doing some of those geeky experiments that we love so much. So, that pretty much covers the "sedimented" substrate thing for now. Let's talk about "alternative" substrates for a bit...

PT.2 : "ALTERNATIVE SUBSTRATES" AND THE "DANGERS" FROM WITHIN? 

In my experience, and in the reported experiences from hundreds of aquarists who play with botanical materials breaking down in and on their aquariums' substrates, undetectable nitrate and phosphate levels are typical for this kind of system. When combined with good overall husbandry, it makes for incredibly stable systems.

I've been thinking through further refinements of the "deep botanical bed"/sand substrate relationship. I've been spending a lot of time researching natural aquatic systems and contemplating how we can translate some of this stuff into our closed system aquaria.

Now, I realize, when contemplating really deep aggregations of substrate materials in the aquarium, that we're dealing with closed systems, and the dynamics which affect them are way different than those in Nature, for the most part.

And I realize that experimenting with these unusual approaches to substrates requires not only a sense of adventure, a direction, and some discipline- but a willingness to accept and deal with an entirely different aesthetic than what we know and love. And this also includes pushing into areas and ideas which might make us uncomfortable, not just for the way they look, but for what we are told might be possible risks.

One of the things that many hobbyists ponder when we contemplate creating deep, botanical-heavy substrates, consisting of leaves, sand, and other botanical materials is the possible buildup of hydrogen sulfide, CO2, and other undesirable compounds within the substrate.

Well, it does make sense that if you have a large amount of decomposing material in an aquarium, that some of these compounds are going to accumulate in heavily-"active" substrates. Now, the big "bogeyman" that we all seem to zero in on in our "sum of all fears" scenarios is hydrogen sulfide, which results from bacterial breakdown of organic matter in the total absence of oxygen.

Let's think about this for just a second.

In a botanical bed with materials placed on the substrate, or loosely mixed into the top layers, will it all "pack down" enough to the point where there is a complete lack of oxygen and we develop a significant amount of this reviled compound in our tanks?  I just don't think so. I think that we're more likely to see some oxygen in this layer of materials, and I can't help but speculate- and yeah, it IS just speculation- that actual de-nitirifcation (nitrate reduction), which lowers nitrates while producing free nitrogen, might actually be able to occur in a "(deep) botanical" bed.

And it's certainly possible to have denitrification without dangerous hydrogen sulfide levels. As long as even very small amounts of oxygen and nitrates can penetrate into the substrate, this will not become an issue for most systems. I personally have yet to see a botanical-method aquarium where the material has become so "compacted" as to appear to have no circulation whatsoever within the botanical layer.

Now, sure, I'm not a scientist, and I base this on the management of, and close visual inspection of numerous aquariums, as well as the basic chemical tests I've run on my systems under a variety of circumstances. As one who has made it a point to keep my botanical-method aquariums in operation for very extended time frames, I think this is significant. The "bad" side effects we're talking about should manifest over these longer time frames...and they just haven't.

And then there's the question of nitrate. 

Although not the terror that ammonia and nitrite are known to be, nitrate accumulation is something a lot of hobbyists are concerned with. As nitrate accumulates, fish will eventually suffer some health issues. Ideally, we strive to keep our nitrate levels no higher than 5-10ppm in our aquariums.  

As a reef aquarist, I was always of the "...keep it as close to zero as possible." mindset, until I realized that corals just grow better with the presence of some nitrate! This was especially evident in my large scale coral grow-out raceways.

It seems that 'zero" nitrate is not always the most realistic or achievable target in a heavily-botanical-laden aquarium, although I routinely see undetectable nitrate reading in my tanks. You have a bit more "wiggle room", IMHO, however, before concern over fish health is a factor. Now, when you start creeping towards 50ppm, you're getting closer towards a number that should alert you.

It's not a big "stretch" from 50ppm to more potentially detrimental readings of 75ppm and higher...

And then you get towards the range where health issues could manifest themselves in your fishes. Now, many fishes will not show any symptoms of nitrate poisoning until the nitrate level reaches 100 ppm or more. However,  studies have shown that long-term exposure to moderate concentrations of nitrate stresses fishes, making them more susceptible to disease, affecting their growth rates, and inhibiting spawning in many species. 

At those really high nitrate levels, fishes will become noticeably lethargic, and may have other health issues that are obvious upon visual inspection, such as open sores or reddish patches on their skin. And then, you'd have those "mysterious deaths" and the sudden death (essentially from shock) of newly-added fishes to the aquarium, because they're not acclimated to the higher nitrate concentrations.

Okay, that's scary stuff. However, high nitrate concentrations are not only manageable- they're something that's completely avoidable in our aquairums.

Quite honestly, even in the most heavily-botanical-laden systems I've played with, I have personally never seen a higher nitrate reading than around 5ppm. Often, as I mentioned above, they're undetectibIe on hobby-level test kits. I attribute this to common sense stuff: Good quality source water (RO/DI), careful stocking, feeding, good circulation, not disturbing the substrate, and consistent basic aquarium husbandry practices (water exchanges, filter maintenance, etc.).

Now, that's just me.

I'm no scientist, certainly not a chemist, but I have a basic understanding of maintaining a healthy nitrogen cycle in the aquarium. And I am habitual-perhaps even obsessive- about consistent maintenance. Water exchanges are not a "when I get around to it" thing in my aquarium management "playbook"- they're "baked in" to my practice.

So yeah, although nitrate is something to be aware of in botanical-method aquariums, it's simply not an ominous cloud hanging over our success.

Relatively shallow sand or substrate beds seem to be optimal for denitrification, and many of us employ them for the aesthetics as well. Light "stirring" of the top layers, if you're concerned about any potential "dead spots" is something that is permissible, IMHO. Any debris stirred up can easily be removed mechanically by filtration, as mentioned above.

But that's it.

 

Of course, as we already discussed, you don't have to go crazy siphoning the shit (literally!) out of your sand every week, essentially decimating populations of beneficial microscopic infauna -or interfering with their function- in the process.

What I am starting to feel more and more confident about is postulating that some form of denitrification occurs in a system with a layer of leaves and botanicals as a major component of the tank.

Now, I know, I have little rigorous scientific information to back up my theory, other than anecdotal observations and even some assumptions. However, there is always an example to look at- Nature. 

Of course, Nature and aquariums differ, one being a closed system and the other being "open." However, they both are beholden to the same laws, aren't they? And I believe that the function of the captive leaf litter bed and the wild litter beds are remarkably similar to a great extent.

The thing that fascinates me is that, in Nature, leaf litter beds perform a similar function; that is, fostering biodiversity, nutrient export, and yes- denitrification. Let's take a little look at a some information I gleaned from the study of a natural leaf litter bed for some insights.

In a slow-flowing wild Amazonian stream with a very deep leaf litter bed, observations were made which are of some interest to us. First off, oxygen saturation was 6.7 3 mg/L (about 85% of saturation), conductivity was 13.8 microsemions, and pH was 3.5.

Some of these parameters (specifically the very low pH) are likely difficult to obtain and maintain in the aquarium, but the interesting thing is that these parameters were stable throughout a months-long investigation.

Oxygen saturation was surpassingly low, given the fact that there was some water movement and turbulence when the study was conducted. The researchers postulated that the reduction in oxygen saturation presumably reflects respiratory consumption by the organisms residing in the litter, as well as low photosynthetic generation (which makes sense, because there is no real algae or plant growth in the litter beds).

And of course, such numbers are consistent with the presence of a lot of life in the litter beds.

 

 

 

Microscopic investigation confirmed that the leaf litter was heavily populated with fungi and other microfauna. There was also a significant amount of fish life. Interestingly, the fish population was largely found in the top 12"/30cm of the litter bed, which was estimated to be about 18"/45cm deep. The food web in this type of habitat is comprised largely of fungal and bacterial growth which occurs in the decomposing leaf litter. 

Okay, I"m throwing a lot of information here, and doing what I hope is a slightly better-than-mediocre attempt at tying it all together. The principal assertions I'm making are that, in the wild, the leaf litter bed is a very productive place, and has a significant impact on its surroundings, and that it's increasingly obvious to me that many of the same functions occur in an aquarium utilizing leaf litter and botanicals.

"Enriching" a substrate with botanicals, or composing an entire substrate of botanicals and leaves is a very interesting and compelling subject for investigation by hobbyists.

So, three areas of potential investigation for us:

*Use of botanicals and leaves to comprise a "bed" for bacterial growth and denitrification.

*Understanding the chemical/physical impact of the botanical "bed" on an aquarium. (ie, pH, conductivity, etc.)

*Utilization of a botanical bed to create a supplemental food source for the resident fishes.

We've also touched on the idea of a leaf litter/botanical bed as "nursery" for fry, something more and more hobbyists/breeders are confirming is a logical "go-to" thing for them. 

Interesting semi-anecdotal observations from my friends in the know suggest that the biofilms for decaying leaves form a valuable secondary food for the fry of fishes such as Discus, Uaru, (after they’re done feeding on their parent’s exuded slime coat) and even Loricariid catfishes. And I've seen juvenile fishes  of a variety of species "appear" from my botanical-rich aquariums over the years, fat and happy, apparently deriving some nutrition from the fungi, bacteria, and small crustaceans which live in, on, and among the leaf litter bed.

My own experience with creating leaf-litter-bed-focused aquariums has proven that supplemental food production for the resident fishes is a real "thing" that we need to consider. It's a valid and very exciting approach to creating a functional closed aquatic ecosystem.

 

We talk about the concept of "substrate enhancement" or "enrichment" a lot in the context of aquatic botanicals (we tend to use the two terms interchangeably).

Again, we're not talking about "enrichment" in the same context as say, planted aquarium guys, with materials put into the substrate specifically for the benefit of plants. However, the addition of botanical and other materials CAN create a sort of organic "mulch" which benefits many aquatic plants! 

Rather, "enrichment" in our context refers to the addition of botanical materials for creating a more natural-appearing, natural-functioning substrate- one which provides a haven for microbial life, as well as for small crustaceans, biofilms, and even algae, to serve as a foraging area for our fishes and invertebrates.

We've found over the years of playing with botanical materials that substrates can be really dynamic places, and benefit from the addition of leaves and other materials. For many years, substrates in aquarium were really just sands and gravels. With the popularity of planted aquariums, new materials, like soils and mineral additives, entered into the fray.

With the botanical-method aquarium starting to gain in popularity, now you're seeing all sorts of materials added on and in the substrate...for different reasons of course.

I think the big takeaway is that we should not be afraid to experiment with the idea of mixing various botanical materials into our substrates, particularly if we continue to embrace solid aquarium husbandry practices.

In my opinion, richer, botanically-enhanced substrate provides greater biological diversity and stability for the closed system aquarium. 

Is it for everyone?

Not for those not willing to experiment and be diligent about monitoring and maintaining water quality. Not for those who are superficially interested, or just in it for the unique aesthetics it affords. 

However, for those of you who are adventurous, experimental, diligent, and otherwise engaged with managing and observing your aquariums, I think it offers amazing possibilities. Not only will you gain some fascinating insights and the benefits of "on-board" nutrient export/environmental "enrichment"- you will also get the aesthetics of a more natural-looking substrate as well.

Like so many things we do in our niche, the "weird" alternative and botanical-enriched substrate approaches are fascinating, dynamic, and potentially ground-breaking for the aquarium hobby. For the adventurous, diligent, and observant aquarist, they present numerous opportunities to learn, explore, and create amazing, function-first aquatic ecosystems.

Who's in?

Stay creative. Stay observant. Stay diligent. Stay thoughtful...

And Stay Wet.

 

Scott Fellman

Tannin Aquatics 

 

Anything goes? Well, sort of...

The garden suggests there might be a place where we can meet Nature halfway."-Michael Pollan

It's long been suggested that an aquarium is sort of like a garden, right? And, to a certain extent it is. Of course, we can also allow our tanks to evolve on a more-or-less "random" path than the word "garden" implies...

Perhaps one of the most liberating things about our botanical-method aquariums is that there is no set "style" that you have to follow to "arrange" botanical materials in your tank. 

When you look at those amazing pictures of the natural habitats we love so much, you're literally bombarded with the "imperfection" and apparent randomness that is Nature. Yet, in all of the "clutter" of an igarape flooded forest, for example, there is a quiet elegance to it. There is a sense that everything is there for a reason- and not simply because it looks good. It IS perfect. Can't we bring this sense to our aquariums?

I think we can...simply by meeting Nature halfway.

To a certain extent, it's "anything goes" in terms of adding materials to represent the wild habitats. I mean, when you think about flooded forest floors and rainforest streams, you're talking about an aggregation of material from the forest that has accumulated via wind, rain, and current. The influences on the "design" are things like how something arrives into the water, and how it gets distributed by water movement. 

Nature offers no "style guide." 

Rather, she offers clues, based on her processes.

I mean, sure, you could and should certainly use some aesthetic thought in the concept, but when you're trying to recreate what in Nature is a more-or-less random thing, you probably don't want to dwell too much on the concept! You don't want to over-think "random" too much, right? Rather, put your effort into selecting suitable materials with which to do the job.

For a bit more context, just think for just a second, about the stems and branches that we love so much in our aquascaping. Those of us who obsessively study images of the wild tropical habitats we love so much can't help but note that many of the bodies of water which we model our aquariums after are filled with tree branches and stems.

Since many of these habitats are rather ephemeral in nature, they are only filled up with water part of the year. The remainder of the time, they're essentially dry forest floors.

And what accumulates on dry forest floors?

Branches, stems, leaves, and other materials from trees and shrubs. When the waters return, these formerly terrestrial materials become an integral part of the (now) aquatic environment. This is a really, really important thing to think of when we aquascape or contemplate how we will use botanical materials like the aforementioned stems and branches.

They impact both function and aesthetics of an aquarium...Yes, what we call "functional aesthetics" rears its head again!

There is no real rhyme or reason as to why stuff orients itself the way it does once submerged. There are numerous random factors involved. 

I mean, branches fall off the trees, a process initiated by either rain or wind, and just land "wherever." Which means that we as hobbyists would be perfectly okay just literally tossing materials in and walking away! Now, I know this is actually aquascaping heresy- Not one serious 'scaper would ever do that...right?

On the other hand, I'm not so sure why they wouldn't! 

I mean, what's wrong with sort of randomly scattering stems, twigs, and branches in your aquascape? It's a near-perfect replication of what happens in Nature. Now, I realize that a glass or acrylic box of water is NOT nature, and there are things like "scale" and "ratio" and all of that shit that hardcore 'scapers will hit you over the head with...

But Nature doesn't give a fuck about some competition's "rules"- and Nature is pretty damn inspiring, right? There is a beauty in the brutal reality of randomness. I mean, sure, the position of stones in an "Iwagumi" is beautiful...but it's hardly what I'd describe as "natural."

Natural looks...well, like what you'd see in Nature.

It's pretty hardcore stuff.

And it's all part of the reason that I spend so damn much time pleading with you- my fellow fish geeks- to study, admire, and ultimately replicate natural aquatic habitats as much as you do the big aquascaping contest winners' works. In fact, if every hobbyist spent just a little time studying some of these unique natural habitats and using them as the basis of their work, I think the hobby would be radically different.

When hobbyists interpret what they see in wild aquatic habitats stats more literally, the results are almost always stunning. And contest judges are starting to take notice...

I think that there would also be hobby success on a different level with a variety of fishes that are perhaps considered elusive and challenging to keep. Success based on providing them with the conditions which they evolved to live in over the millennia, not a "forced fit" its what works for us humans.

More awareness of both the function and the aesthetics of fascinating ecological niches, such as the aforementioned flooded forests, would drive the acceptance and appreciation of Nature as it is- not as we like to "edit" and "sanitize" it.

Taking this approach is actually a "stimulus" for creativity, perhaps in ways that many aquarists have not thought of. 

There are a lot of aquatic habitats in Nature which are filled with tangles of terrestrial plant roots, emergent vegetation, fallen branches, etc., which fill small bodies of water almost completely.

These types of habitats are unique; they attract a large populations of smaller fishes to the protection of their vast matrix of structures. Submerged fallen tree branches or roots of marginal terrestrial plants provide a large surface area upon which algae, biofilm, and fungal growth occurs. This, in turn, attracts higher life forms, like crustaceans and aquatic insects. Sort of the freshwater version of a reef, from a "functionality" standpoint, right?

Can't we replicate such aquatic features in the aquarium?

Of course we can!

This idea is a fantastic expression of "functional aesthetics." It's a "package" that is a bit different than the way we would normally present an aquarium. Because we as hobbyists hesitate to densely pack an aquarium like this, don't we?

Why do you think this is?

I think that we hesitate, because- quite frankly- having a large mass of tangled branches or roots and their associated leaves and detritus in the cozy confines of an aquarium tends to limit the number, size, and swimming area of fishes, right? Or, because its felt that, from an artistic design perspective, something doesn't "jibe" about it...

Sure, it does limit the amount of open space in an aquarium, which has some tradeoffs associated with it.

On the other hand, I think that there is something oddly compelling, intricate, and just beautiful about complex, spatially "full" aquatic features. Though seldom seen in aquarium work, there is a reason to replicate these systems. And when you take into account that these are actually very realistic, entirely functional representations of certain natural habitats and ecological niches, it becomes all the more interesting!

What can you expect when you execute something like this in the aquarium?

Well, for on thing, it WILL take up a fair amount of space within the tank. Of course. Depending upon the type of materials that you use (driftwood, roots. twigs, or branches), you will, of course, displace varying amounts of water.

Flow patterns within the aquarium will be affected, as will be the areas where leaves, detritus and other botanical materials settle out. You'll need to understand that the aquarium will not only appear different- it'll function differently as well. Yet, the results that you'll achieve- the more natural behaviors of your fishes, their less stressful existence- will provide benefits that you might not have even realized possible before. 

This is something which we simply cannot bring up often enough. It's transformational in our aquarium thinking. 

The "recruitment" of organisms (algae, biofilms, epiphytic plants, etc.) in, on, and among the matrix of wood/root structures we create, and the "integration" of the wood into other "soft components" of the aquascape- leaves and botanicals is something which occurs in Nature as well as in the aquairum.

This is an area that has been worked on by hobbyists rather infrequently over the years- mainly by biotope-lovers. However, embracing the "mental shifts" we've talked about so much here- allowing the growth of beneficial biocover, decomposition, tinted water, etc.- is, in our opinion, the "portal" to unlocking the many secrets of Nature in the aquarium.

The extraordinary amount of vibrance associated with the natural growth on wood underwater is an astounding revelation. However, our aesthetic sensibilities in the hobby have typically leaned towards a more "sterile", almost "antispetic" interpretation of Nature, eschewing algae, biofilm, etc.

However, a growing number of hobbyists worldwide have began to recognize the aesthetic and functional beauty of these natural occurances, and the realism and  I think that the intricate beauty of Nature is starting to eat away at the old "sterile aquascape" mindset just a bit!

And before you naysayers scoff and assert that the emerging "botanical method" aquarium is simply an "excuse for laziness", as one detractor communicated to me not too long ago, I encourage you once again to look at Nature and see what the world underwater really looks like. There is a reason for the diversity, apparent "randomness", and success of the life forms in these bodies of water.

What is it?

It's that these materials are being utilized- by an enormous community of organisms- for shelter, food, and reproduction. Seeing the "work" of these organisms, transforming pristine" wood and crisp leaves into softening, gradually decomposing material, is evidence of the processes of life.

When you accept that seed pods, leaves, and other botanical materials are somewhat ephemeral in nature, and begin to soften, change shape, accrue biofilms and even a patina of algae- the idea of "meeting Nature halfway" makes perfect sense, doesn't it? 

You're not stressing about the imperfections, the random patches of biofilm, the bits of leaves that might be present in the substrate. Sure, there may be a fine line between "sloppy" and "natural" (and for many, the idea of stuff breaking down in any fashion IS "sloppy")- but the idea of accepting this stuff as part of the overall closed ecosystem we've created is liberating.

Sure, we can't get every functional detail down- every component of a food web- every biochemical interaction...the specific materials found in a typical habitat- we interpret- but we can certainly go further, and continue to look at Nature as it is, and employ a sense of "acceptance"- and randomness-in our work. 

I'm not telling you to turn your back on the modern popular aquascaping scene; to disregard or dismiss the brilliant work being done by aquascapers around the world, or to develop a sense of superiority or snobbery, and conclude that everyone who loves this stuff is a sheep...

Noooooo.

Not at all.

I'm simply the guy who's passing along the gentle reminder from Nature that we have this great source of inspiration that really works! Rejoice in the fact that Nature offers an endless variety of beauty, abundance, and challenge- and that it's all there, free for us to interpret it as we like. Without aesthetic rules, rigid standards, and ratios. The only "rules" are those which govern the way Nature works with materials in an aquatic environment.

A botanical-method aquarium features, life, death, and everything in between.

It pulses with the cycle of life, beholden only to the rules of Nature, and perhaps, to us- the human caretakers who created it.

But mainly, to Nature.

The processes of life which occur within the microcosm we create are indifferent to our desires, our plans, or our aspirations for it. Sure, as humans, we can influence the processes which occur within the aquarium- but the ultimate outcome- the result of everything that we did and did not do- is based solely upon Nature's response.

In the botanical-style aquarium, we embrace the randomness and unusual aesthetic which submerged terrestrial materials impart to the aquatic environment. We often do our best to establish a sense of order, proportion, and design, but the reality is that Nature, in Her infinite wisdom borne of eons of existence, takes control.

It's a beautiful process. Seemingly random, yet decidedly orderly.

Think about that for a bit.

Stay curious. Stay bold. Stay creative. Stay thoughtful...

And Stay Wet.

 

Scott Fellman

Tannin Aquatics 

 

Specialized diets, "Leopard Frogs", and re-thinking assumptions...

I'm fascinated by the dietary preferences of fishes. How they've evolved over eons to consume various items found in their environments; how many fishes became "specialists" as an adaptation to the habitats in which they live.

And, as an aquarist who derives great pleasure from seeing his fishes "live off the land" and consume foods from the aquarium environment in which they reside, I really find some of the seunderlying feeding strategies fascinating. One of the more interesting examples is the consumption of wood by various species of fishes.

We read a lot about fishes which eat wood and wood-like materials.

Of course, the ones that come immediately to mind are the Loricariidae, specifically, Panaque species. Now, I admittedly am the last guy who should be authoritatively discussing the care of catfishes, having maintained maybe a couple dozen or so species during a lifetime of aquarium keeping. However, I do understand a little bit about their diets and the idea of utilizing wood- and botanical materials- in the aquarium for the purpose of supplementing our fishes' diets!

And of course, I'm equally fascinated by the world of biofilms, decomposition, microorganism growth and detritus...And this stuff plays right into that! 

Now, the idea of xylophagy (the consumption and digestion of wood) is of course, a pretty cool and interesting adaptation to the environment from which these fishes come from. And as you'd suspect, the way that wood is consumed and digested by these fishes is equally cool and fascinating! 

It's thought by ichthyologists that the scraping teeth and highly angled jaws of the Loricariidae are a perfect adaptation to this feeding habit of "scraping" wood. And of course, it's even argued among scientists that these fishes may or may not actually digest the wood they consume! While scientists have identified a symbiotic bacteria which is found in the gut of these fishes that helps break down wood components, it's been argued by some the the fishes don't actually digest and metabolize the wood; indeed deriving very little energy from the wood they consume!

Hmmm...

In fact, a lab study by Donovan P. German was described in the November, 2009 Journal of Comparative Physiology, in which several species were fed wood and found to actually digest it quite poorly

"...in laboratory feeding trials, (Pterygoplichthys cf. nigrolineatus and Hypostomus pyrineusi)  lost weight when consuming wood, and passed stained wood through their digestive tracts in less than 4 hours. Furthermore, no selective retention of small particles was observed in either species in any region of the gut. Collectively, these results corroborate digestive enzyme activity profiles and gastrointestinal fermentation levels in the fishes’ GI tracts, suggesting that the wood-eating catfishes are not true xylivores such as beavers and termites, but rather, are detritivores like so many other fishes from the family Loricariidae."

Did you see that? Detritioves. Like, they're taking in wood to get other stuff out of the deal... And detritus is comprised of stuff like macrophytes, algae, and particulate organic carbon.

Hmm...

And this little nugget from the same study:  "...The fishes consumed 2–5% of their body mass (on a wet weight basis) in wood per day, but were not thriving on it, as Pt. nigrolineatus lost 1.8 ± 0.15% of their body mass over the course of the experiment, and Pt. disjunctivus lost 8.4 ± 0.81% of their body mass.

Oh, that's weird.

Yet, anatomical studies of these fishes showed that the so-called "wood-eating catfishes" had what physiologists refer to as "body size-corrected intestinal lengths" that were 35% shorter than the detritivore species. What does this mean? Could they have perhaps had at one time- and subsequently lost- their ability to digest wood?

Maybe?

Arrgh!

And to make it even weirder, check out this passage from a study by Lujan, Winemiller, and Armbruster:

"Loricariids have a dense endoskeleton and are covered with dermal plates composed primarily of calcium phosphate, giving them a high physiological demand for dietary phosphorus. Paradoxically, the rivers and streams inhabited by loricariids as well as the detritus and biofilm that most loricariids consume tend to be highly Phosporus deficient."

The same study noted that, "Loricariids as a whole are largely unable to digest lignocellulose, and instead derive most nutrients and energy from easily digestible breakdown products (e.g., disaccharides and dipeptides) that are produced during microbial degradation of submerged, decomposing wood."

Oh, interesting!

I think it's yet another case of us as hobbyists drawing innocent conclusions based on anecdotal or superficial observations. I mean,"... they're munching on my wood, therefore, they must be 'eating' it!"

 

Now, to the point of the argument that most loricariids are primarily detritivores, consuming a matrix of biofilm, algal growth, microorganisms, and (for want of a better word) "dirt"- what does this mean to us as hobbyists? Well, for one thing, this has made them remarkably adaptable fishes in the aquarium. They will definitely rasp at wood", but according to the studies I just cited, they are not "eating" it, per se.

Now, my personal experience with Loricariidae is nothing like many of yours, and an observation I've made over the years is at best anecdotal- but interesting:

If you follow "The Tint", you know I've had a years-long love affair with Peckolotia compta aka "L134 Leopard Frog"- a beautiful little fish that is filled with charms. Well, I recall, are years back, that my first specimen seemed to have vanished into the ether following a re-configuration/rescape of my home blackwater/botanical-method aquarium. I thought somehow I either lost the fish during the re-scape, or it died and subsequently decayed without my detecting it... Pretty upsetting either way, but I couldn't find any trace of it!

For almost three months, the fish was M.I.A., just....gone.

And then one, day- there she was, poking out from the "Spider Wood" thicket that formed the basis of my newer hardscape! To say I was overjoyed was a bit of an understatement, of course! And after her re-appearance, she was out every day. She looked just as fat and happy as when I last saw her in the other 'scape...which begs the question (besides my curiosity about how she evaded detection)- What the fuck was she feeding on during this time?

Well, I suppose it's possible that some bits of frozen food (I fed frozen almost exclusively at that time) got away from my population of hungry characins and fell to the bottom...However, I'm pretty fastidious- and the other fishes (characins) were voracious mid-water-column feeders! To think that any appreciable amount got away from the hungry hoard was a bit hopeful. I believed at the time (and now am fully convinced) that it was more likely the biofilms, fungal growth, and perhaps some of the compounds from surface tissues of the "Spider Wood" I used in the hardscape that she was feeding on.

"Spiderwood" (aka Azalea root) stuff does recruit significant biological growth on it's surfaces when submerged , and curiously, in this tank, I noticed that, during the first few months, the wood seemed to never accumulate as much of this stuff as I had seen it do in past tanks which incorporated it!

I attributed this to perhaps some feeding by a population of Nanostomus eques, which have shown repeatedly in the past to feed on the biofilm or "aufwuchs" accumulating on the wood.

I'm sure that was a valid observation, but they were actively taking prepared foods as the bulk of their diet, so I have a hard time that they solely were responsible. 

There was also a layer of Live Oak leaves distributed throughout the booth of the wood matrix, which, although they break down very slowly compared to other leaves we use, DO ultimately soften over time and break down over time. Since they are rather "durable", they do accumulate a lot of fungal growth and biofilms on their surfaces.

Interestingly, in this tank, I was finding little tiny amounts of very broken-down leaves, which I attributed to decomposition, but thinking back on it, looks more like the end product of "digestion" by someone!

I don't think I ever saw my L134 consuming prepared food. When I did observe her activities, she was seemingly "grazing" away at the wood surfaces and on botanicals...That's all the proof that I needed to confirm my theory that she's pretty much 100% detritivorous, and that the botanical-method aquariums she's resided in provide a sufficient amount of this material for her to consume.

To this day, I've never seen her eat prepared foods!

I have since acquired three captive-bred specimens from my friend, master breeder Sumer Tiwari, and this group has been seen to take prepared food on occasion. At the very least, adding some pellets or frozen foods seems to initial some kind of response in the fish, wether they appear to eat it or not.

So, back the the whole "xylophore thing"... After reading the studies I mentioned, I think that in the aquarium, as well as in the wild, much of what we think is actually "consumption" of the wood by the fishes is simply incidental- as in, the fishes are trying to eat the biocover and detritus on the surface tissues of the wood, and perhaps obtain some nutrition from the compounds contained in the softer portions of the wood. They apparently do a pretty good job (with their specialized mouthparts) of rasping away the surface tissues of the wood!

So, yeah- apparently, some of the wood may pass through the digestive tract of the catfishes, but it's passed without metabolizing much from it...perhaps like the way chickens  consume gravel, or whatever (don't they? City boy here! WTF do I know about chickens!)...or the way some marine Centropyge angelfishes "nibble" on corals in their pursuit of algae, detritus, and biofilms.

Again, my perusal of German's scientific paper seems to support this theory:

"Catfishes supplement their wood diet with protein-rich detritus, or even some animal material to meet their nitrogen requirements. Although I did not observe animal material in the wood-eating catfish guts, Pt. disjunctivus did consume some animal material (including insects parts, molluscs, and worms), and all three species consumed detritus."

And finally, the "clincher", IMHO: "The low wood fiber assimilation efficiencies in the catfishes are highly indicative that they cannot subsist on a wood only diet."

Boom.

 

I mean, it's just one paper, but when he's talking about isotopic tracing of materials not consistent with digestion of wood in the guts of Loricariids, I think that pretty much puts the "eats wood" thing to bed, right? His further mention that, although some cellulose and lignin (a component of wood and our beloved botanicals!) was detected in the fish's fecal material, it was likely an artifact of the analysis method as opposed to proof that the fishes derived significant nutrition from it.

So what does all of this stuff mean to us? 

Well, for one thing, once again- detritus/biofilm/fungal growths = good. Don't loathe them. Love them.

Your fishes apparently do.

I think it means that, as hobbyists probably knew, theorized, and discussed for a long time- that the Loricariids consume detritus, biofilms, and prepared foods when available. This is not exactly earth-shattering or new.

However, I think understanding that our botanical-method aquariums can- and do- provide a large amount of materials from which which these and other fishes can derive significant nutrition furthers my assertion that this type of system is perfect for rearing and maintain a lot of specialized feeders. 

Materials like the harder-"shelled" botanicals (ie; "Skyfruit" pods, Cariniana pods, Mokha pods, bark, etc.) tend to recruit significant fungal growths and biofilms, and accumulate detritus in and on their surfaces. And of course, as they soften, some fishes apparently rasp and "consume" some of them directly, likely passing most of it though their digestive systems as outlined in the cited study, extracting whatever nutrition is available to them as a result. This is likely the case with leaves and softer botanicals as well.

Incidental consumption.

The softer materials might also be directly consumed by many fishes, although the nutrition may or may not be significant. However, the detritus, fungal, and microorganism growth as a result of their decomposition is a significant source of nutrition for many fishes and shrimps.

Detritivores (of which the amount of species in the trade is legion), have always done very well in botanical-method aquariums, and the accumulation of biofilms and microbial growth is something that we've discussed for a long time. By their very nature, the structure and decomposition of botanical materials make the "functional aesthetics" of our aquariums an important way to accommodate the natural feeding behaviors of our fishes.

So, the answer to the question (literally!), "Who has the (literal) guts for this stuff?" is quite possibly, "everyone!" 

Now, while while we're on the subject of loricariids, a further scan of scientific literature revealed some interesting things about what these fishes are actually taking in when they "graze" in the wild. It's kind of eye opening, to me. One study revealed that loricariids consumed five principal items: sponges, organic detritus, bryophytes, bryozoans and sediment.

Wood is definitely part of the equation somewhere, but for the species examined in one of the studies I found (Rhinelepis aspera, Hypostomus regani, H. ternetzi, H. maragaritifer, H. microstomus, and Megalancistrus aculeatus) the gut content analysis was quite revealing:

The food spectrum of R. aspera is primarily "organic detritus and small quantities of sediment"; with few periphytic organisms. Although H. regani was found to consume large quantities of organic detritus as well, it also consumed "plant detritus, various sediment, and periphytic organisms" (i.e.; bryozoans, sponges and aquatic insect larvae). Bryozoans and sponges, huh?

Wow! Freshwater sponges...

The study indicated that bryozoans and organic detritus were the main food food of H. ternetzi, which, according to the gut contents of a number of individuals,  tended to consume more sediment, rotifers, chironomids (i.e.; "Bloodworms'), gastropods and harpacticoids than the other species.

Harpactoids...you mean, like "copepods?" Stuff we as reefers feed all the time? H. margaritifer was found to ingest plant material. Other periphytic organisms such as insect larvae, and those bryozoans and sponges contributed to the diet of H. margaritifer.

And it gets more interesting still...

Sponges- I can't let that go.

Sponges were the principal food resource of H. microstomus and M. aculeatus, along with a healthy does of chironomids, various gastropods, Trichoptera (insects), and some bryozoans also consumed. Diets of these two fishes were composed of larger-sized items, with the finer organic detritus and such being less important than it was to the other species in the study. 

This kind of information is tantalizing. It's compelling. 

And what really gets me going is learning that some of our favorite, most beloved fishes are consuming large quantities of materials that I doubt any freshwater aquarist adds to his/her arsenal of foodstuffs. We're really good at feeding our catfishes baby vegetables and stuff, while typically overlooking many species' surprisingly high dietary dependency on items like insects, bryozoans, harpactoid copepods, and interestingly...sponges!

While we kind of always knew that these fishes ingested wood and "stuff", it's interesting to see what they're actually eating in the wild...especially the "stuff"- and configuring our aquariums and the supplemental and primary feeding opportunities available to the fishes accordingly.

We have some interesting, yet perhaps overlooked possibilities to provide some of these items. 

In fact, there are a number of marine aquarium-purposed foods (typically targeted at certain marine angelfishes, many of which consume significant quantities of sponge) which contain sponges in their formulation. One of my favorite is Ocean Nutrition's "Angel Formula." Granted, these foods contain stuff like mussels, and other marine foods, and the sponges included are marine sponges, but I can't help but wonder if these are that morphologically or nutritionally different/palatable to the fishes than a freshwater/tree sponge would be?

Could the next great frozen Loricarid food include sponges? And we DO have harpactoid copepods available live, and in a variety of other formats intended for marine fishes and corals...Interestingly, I remember that the big "knock" by us reefers, for a long time, about some of these copepods was that they were "freshwater" varieties, and therefore didn't have the "correct" nutritional profile for marine organisms.

Hmm. We're talking about freshwater fishes here, right? Yeah. 

So, like, why the hell haven't we been feeding these foods to our freshwater fishes all of these years?

Try some of these foods with your loricariids..and other fishes as well. What's to lose?

Oh, I can hear the objections: 

"Impractical!"

Is it?. Online ordering is really cool. It might just catch on.

"Too much work!" 

Really? C'mon. Ever cultured Grindal Worms or wingless fruit flies?  THAT is "too much work" by definition.

"This is ridiculous; No need to experiment with these wacky foods. We're doing just fine now with Zucchini and stuff! Stupid."  

Urghhhhh. "If man was meant to fly, he'd have wings..."

To not experiment is stupid, IMHO. 

Don't be stupid. And I mean that in the kindest way possible. Don't just accept "what works" as "the way." 

Push forward. Experiment. Fail quickly, or move forward rapidly with success. Play a hunch or two. Try something different. This is how advances in the hobby are made. This is how breakthroughs happen.

You gotta try.

Stay studious. Stay curious. Stay observant. Stay engaged. Stay resourceful...

And Stay Wet.

 

Scott Fellman

Tannin Aquatics 

The "fungal filter?"

You saw the title.

What exactly am I talking about here? 

 

 

Today, I want to double back and talk a bit about our gooey friends, the fungi- for just a few minutes. Despite their off-putting appearance to some, they may be among the most beautiful, elegant, and useful organisms we encounter in the aquatic world.

Why do I have such devotion to organisms which most of us find truly revolting in appearance? 

Because they are among the most important and useful organisms which we can have in our botanical method aquariums. Think about how they arrive in aquatic ecosystems, what they consume, how they derive nutrition, and what they do for the overall ecosystem.

As everyone knows, when you put stuff in water, one of four things seems to happen:

1) Nothing.

2) It gets covered in a gooey slime of fungal growth, and "biofilm."

3) It starts to break down and decompose.

4) Both 2 and 3

Now, it's pretty much a "given" that any botanicals or leaves that you drop into your aquarium will, over time, break down. Wood, too. And typically, before they break down, they'll "recruit" (a fancy word for "acquire') a coating of some rather unsightly-looking growth. Well, "unsightly" to those who have not been initiated into our little world of decomposition, fungal growth, biofilms, tinted water, etc., and maintain that an aquarium by definition is a pristine-looking place without a speck of anything deemed "aesthetically unattractive" by the masses! 

So, with that little explanatory passage out of the way, let's take a closer look at fungi-the stuff that you'll see covering the leaves, botanicals, and wood that you place into your aquarium, and why you actually WANT the stuff there in the first place.

The fungi known as aquatic hyphomycetes produce enzymes which break down botanical materials in water. Essentially, they are primary influencers of leaf maceration. They're remarkably efficient at what they do, too. In as little as 3 weeks, as much as 15% of the decomposing leaf biomass in many aquatic habitats is "processed" by fungi, according to one study I found!

Aquatic hyphomycetes play a key role in the decomposition of plant litter of terrestrial origin- an ecological process in rain forest streams that allows for the transfer of energy and nutrients to higher tropic levels. 

This is what ecologists call "nutrient cycling", folks.

These fungi colonize leaf litter and twigs and such soon after they're immersed in water. The fungi mineralize organic carbon and nutrients and convert coarse particulate matter into fine particulate organic matter. They also increase leaf litter palatability to shredders, which helps facilitate physical fragmentation.

Fungi tend to colonize wood and botanical materials, because they offer them a lot of surface area to thrive and live out their life cycle. And cellulose, hemicellulose, and lignin- the major components of wood and botanical materials- are degraded by fungi, which posses enzymes that can digest and assimilate these materials and their associated organics!

Fungi are regarded by biologists to be the dominant organisms associated with decaying leaves in streams, so this gives you some idea as to why we see them in our aquariums, right?

In aquarium work, we see fungal colonization on wood and leaves all the time. Most hobbyists will look on in sheer horror if they saw the same extensive amount of fungal growth on their carefully selected, artistically arranged wood pieces as they would in virtually any aquatic habitat in Nature!

Yet, it's one of the most common, elegant, and beneficial processes that occurs in natural aquatic habitats!

It's everywhere.

Of course, fungal colonization of wood and botanicals is but one stage of a long process, which occurs in Nature and our aquariums. And, as hobbyists, once we see those first signs of this stuff, the majority of us tend to reach for the algae scraper or brush and remove as much of it as possible- immediately! And sure, this might provide some "aesthetic relief" for some period of time- but it comes right back...because these materials will provide a continuous source of food and colonization sites for fungal growths for some time!

I know that the idea of "circumventing" this stuff is appealing to many, but the reality is that you're actually interrupting an essential, ecologically beneficial natural process. And, as we know, Nature abhors a vacuum, and new growths will return to fill the void, thus prolonging the process.

Again, think about the role of aquatic hyphomycetes in Nature.

Fungal colonization facilitates the access to the energy trapped in deciduous leaves and other botanical materials found in tropical streams for a variety of other organisms to utilize. 

As we know by now, fungi play a huge role in the decomposition of leaves, both in the wild and in the aquarium. By utilizing special enzymes, aquatic fungi can degrade most of the molecular components in leaves, such as cellulose,, hemicelluloses, starch, pectin and even lignin.

Fungi, although not the most attractive-looking organisms, are incredibly useful...and they "play well" with a surprisingly large number of aquatic life forms to create substantial food webs, both in the wild and in our aquariums!

Natural habitats are absolutely filled with this stuff...It's like the whole game here- an explosion of life-giving materials, free for the taking...

Yet, we freak the fuck out about it when it shows up.

Another "mental shift", I suppose...one which many of you have already made, no doubt. I certainly look forward to seeing many examples of us utilizing "what we've got" to the advantage of our fishes! AGAIN: A truly "Natural" aquarium is not sterile. It encourages the accumulation of organic materials and other nutrients- not in excess, of course.

The love of pristine, sterile-looking tanks is one of the biggest obstacles we need to overcome to really advance in the aquarium hobby, IMHO.

Biofilms, fungi, algae...detritus...all have their place in the aquarium. Not as an excuse for lousy or lazy husbandry- but as supplemental food sources to "power" the ecology in our tanks.

And of course, as we've discussed many times here, fungi are actually an important food item for other life forms in the aquatic environments tha we love so much!  In one study I stumbled across, gut content of over 100 different aquatic insects collected from submerged wood and leaves showed that fungi comprised part of the diet of more than 60% of them, and, in turn, aquatic fungi were found in gut content analysis of many species of fishes!

One consideration: Bacteria and fungi that decompose decaying plant material in turn consume dissolved oxygen for respiration during the process.

This is one reason why we have told you for years that adding a huge amount of botanical material at one time to an established, stable aquarium is a recipe for disaster. There is simply not enough fungal growth or bacteria to handle it. They reproduce extremely rapidly, consuming significant oxygen in the process.

Bad news for the impatient.

Support. Co-dependency. Symbiosis. Whatever you want to call it- the presence of fungi in aquatic ecosystems is extremely important to other organisms.

You can call it free biological filtration for your aquarium!

GREAT news for the patient, the studious, and the accepting.

Think about this: These life forms arrive on the scene in Nature, and in our tanks, to colonize appropriate materials, to process organics both in situ on the things that they're residing upon (leaves, twigs, branches, seed pods, wood, etc.). 

Yeah, if you intervene by removing stuf-f bad things can happen. Like, worse things than just a bunch of gooey-looking fungal and biofilm threads on your wood. Your aquarium suddenly loses its capability of processing the leaves and associated organics, and- who's there to take over? 

Okay, I'm repeating myself here- but there is so much unfounded fear and loathing over aquatic fungi that someone has to defend their merits, right? Might as well be me!

My advice; my plea to you regarding fungal growth in your aquarium? Just leave it alone. It will eventually peak, and ultimately diminish over time as the materials/nutrients which it uses for growth become used up. It's not an endless "outbreak" of unsightly (to some) fungal growth all over your botanicals and leaves. It goes away significantly over time. 

"Over time."

That's "Fellman Speak" for "Please be more fucking patient!"

Seriously, though, hobbyists tend to overly freak out about this kind of stuff. Of course, as new materials are added, they will be colonized by fungi, as Nature deems appropriate, to "work" them.

It's one of those things in the botanical-method aquarium that we need to wrap our heads around. We need to understand, lose our fears, and think about the many positives these organisms provide for our tanks. These small, seemingly "annoying" life forms are actually the most beautiful, elegant, beneficial friends that we can have in the aquarium. When they arrive on the scene in our tanks, we should celebrate their appearance.

Why?

Because their appearance is yet another example of the wonders of Nature playing out in our aquariums, without us having to do anything of consequence to facilitate their presence, other than setting up a tank embracing the botanical method in the first place. We get to watch the processes of colonization and decomposition occur in the comfort of our own home. The SAME stuff you'll see in any wild aquatic habitat worldwide.

Amazing.

For those of you who MUST find some familiar comfort in established philosophy- look no further than the beloved master, Takashi Amano.  He laid down this track decades ago...

Yup. I'm channeling Mr. Amano here. 

In the botanical method aquairum, Amano's concept of embracing the Japanese philosophy of wabi-sabi takes over. Accepting the transient nature of things and enjoying the beauty of the changes that occur over time. 

Part of the game, as we've discussed ad naseum here, is to understand, appreciate, and ultimately embrace the way the aquatic environment is influenced by the fungal growths, biofilms, and decomposition which occurs when botanicals are added into our aquariums. 

Remember, your aquairum is not a pice of kinetic art. It's a miniature, closed aquatic ecosystem. Processes which occur in Nature play out daily in your tank.

Yeah, I admit, decades ago, I freaked out about seeing fungal growths in my tanks, too. I'd get a bit scared, wondering if something was wrong, and why no one else's aquariums ever seemed to look like mine. I used to think something was really wrong!

To reassure myself, I would stare for hours at underwater photos taken in the Amazon region, showing decaying leaves, biofilms,and fungi all over the leaf litter. I'd read the studies by researchers like Henderson and Walker, detailing the dynamics of wild leaf litter zones and how productive and unique they were.

I remember telling myself that what I was seeing in my tanks was remarkably similar to what I saw in images and videos of wild aquatic habitats that I wanted to replicate. They seem to look- and even function- so similarly.

I'd pour over my water quality tests, confirming for myself that everything was okay. It always was. And of course I would watch my fishes for any signs of distress...

I never saw them.

Truth be known, I knew that there wouldn't be any issues, because I created my aquariums with a solid embrace of basic aquatic biology; an understanding that an aquarium is not some sort of underwater art installation, but rather, a living, breathing microcosm of organisms which work together to create a biome..and that the appearance of the aquarium only tells a small part of the story.

 

And another big concept for you to wrap your head around:

Your aquarium- or more specificlally- the colonized botanical materials which comprise the botanical-method aquarium "infrastructure" acts as a biological "filter system."

In other words, the botanical materials present in our systems provide enormous surface area upon which beneficial bacterial biofilms and fungal growths can colonize. These life forms, like fungi, utilize the organic compounds present in the water as a nutritional source, thus creating a "nutrient assimilation process."

Understanding and embracing this has changed everything about how I look at aquarium management and the creation of functional closed aquatic ecosystems. 

It's really put the word "natural" back into the aquarium keeping parlance for me. The idea of creating a multi-tiered ecosystem, which provides a lot of the requirements needed to operate successfully with just a few basic maintenance practices, the passage of time, a lot of patience, and careful observation.

It means adopting a different outlook, accepting a different, yet very beautiful aesthetic. It's about listening to Nature instead of the "influencer" on YouTube with the flashy, gadget-driven tank and nothing substantive to back up his vapid narrative. It means educating yourself a bit. It's not always fun at first for some, and it initially seems like you're somehow doing things wrong.

But you're not. And Mother Nature won't let you down if you don't lose faith in Her.

And yeah- it's about faith. Faith in Mother Nature, who's been doing this stuff for eons. She's got this. She'll hook you up...If you allow Her. If you have faith in Her processes.

Have faith.

Stay bold. Stay thoughtful. Stay curious. Stay patient...

And Stay Wet.

 

Scott Fellman

Tannin Aquatics 

 

"Aquarium practice rooted in neither culture nor tradition..."

I've been asked a lot lately to comment on our philosophical position here at Tannin; a sort of rundown of what makes us tick, and how we arrived at our overriding approach and mindset. And, looking back on our past 7 years of operation, it's interesting for me, too.

If you haven't noticed, we tend to take a different view of the aquarium hobby around. here. Not that we don't respect, value, or love all of the traditions of the hobby as it exists- we do. However, in practice, we look at things from a slightly different point of view; one which puts Nature in charge of a lot of things.

We look at it as if we have a responsibility to step out of the way a bit; to cede a little control to Nature...To set the stage and to let natural processes play out in our tanks with limited, if any intervention on our part.

To create more naturally-functioning aquatic, authentic-looking displays for our fishes. To understand and acknowledge that our fishes- and their very existence- is influenced by the habitats in which they have evolved. 

Although a high percentage of the wild aquatic habitats that we love some much happen to consist of earthy, brown water, with decomposing leaves, twigs, and seed pods, we are inspired by, and play with all sorts of habitats, ranging from crystal clear karmic rivers, to brackish water estuaries, to the Rift Lakes of Africa. It's all about finding inspiration from a variety of natural aquatic habitats, and replicating their function, to the best of our ability, in aquariums.

It's not just "lip service", either. When you look at some of the aquariums we've advocated for, created and managed, that becomes fairly obvious!

We advocate some rather "unconventional" stuff.

But is it really THAT unconventional?

All we're doing is focusing on the more "natural" part of Nature, if that makes sense. We're not overstating our skill in what we do, nor basting our work with vapid rhetoric. We're just doing stuff. A bit differently. Questioning some long-held beliefs. Trying to recreate natural function in the aquarium- perhaps, a bit less "traditionally" than has previously been done in the hobby.

And it all starts with our view of Nature, and our place within it as aquarists. Hobbyists love to expound on ideas about Nature, and how what they do is an "expression of Nature", in a reverent, almost religious way. Cool, I guess, but sometimes, I find it a bit silly. I mean, every aquarium is an expression of Nature to a certain extent.

Those prosaic, often pretentious, haiku-like statements that we see posted by aquarists online about "...standing before Nature" and stuff like that sound really cool, but what the hell do they mean? And, if the aquarium that you're executing when spouting this stuff is as relevant to a wild natural aquatic habitat as a vase full of cut flowers is to a mountain meadow, how do you reconcile that kind of lofty rhetoric?

It just rings hollow when you think about it.

Unfortunately, in our social-media-soundbite iteration of the hobby, that kind of "word salad" makes a great Instagram Reel, or whatever. The headline is rad. But it "dumbs stuff down" and objectively tends to fall flat when you really look for some real meaning behind it.

In a very real way, the creation of an aquarium is a search for meaning.

The relationship between Nature and our aquariums makes a lot more sense when you look at, and study the wild aquatic habitats of the world, and and attempt to replicate their function as accurately as possible. The appearance, which we as humans hold so important, seems to follow the function. We either like it, or we don't.

That's pretty straightforward...

Of course, not everyone likes the appearance of aquariums created and executed in this manner. This makes sense. Nature doesnt create aquatic habitats for our viewing pleasure. Not all of Her creations square with our hobby definition of "beautiful."

Nature doesn't care.

Our approach understands this, and rather than trying to warp Nature into something that looks "right" to us, we advocate making mental shifts to see the beauty in what Nature does, and to embrace this stuff when it happens in our aquariums.

It's not about trying to win some contest, receive accolades from the Instagram crowd, or trying to meet some rigid standards set out for competition "biotope aquariums." You won't garner a million adoring YouTube fans by presenting aquariums filled with decomposing leaves and brown water. You won't have contest judges throwing roses at your feet. And you won't be creating aquariums that look like what you're used to seeing pretty much everywhere.

Rather, our philosophy is about looking at Nature as it is, and accepting all of it. Humbly accepting, of course, that we can't perfectly replicate every aspect of Nature and her function to the "nth degree." Instead, it's about learning what we can from the wild aquatic habitats of the world and trying to bring their function into our home aquariums to the greatest extent possible.

That means embracing stuff like sediment, turbidity, tinted water, fungal threads, biofilms, decay, and detritus...the results of natural processes which occur when terrestrial materials are immersed in water. 

Stuff which, quite frankly, freaks most hobbyists out. Full stop.

 

To you, it also means mentally shifting to not freak out about the appearance of these things in our aquaruims.

To not seek ways to eradicate them; rather, to contemplate what makes them form, and what role they play in the overall aquatic ecosystem that we have created, And indeed, to rejoice in the fact that these same things happen in the wild aquatic habitats we strive so hard to attempt to replicate in our tanks.

These principles, and the mental shifts that we make to accept them, form the "transportive mechanism" of the botanical method aquarium. It challenges you. It tests you. It doesn't give a damn about what you think it should look like. It's about ceding some control to Nature- something not always comfortable to everyone.

It's an aquarium practice neither rooted in tradition nor hobby culture. Rather, it's based upon the whims and functions of Nature Herself.

Tradition...not included?

Well, yeah...for the most part. Because "aquarium tradition" typically eschews stuff like algal films, detritus, fungal growth, turbidity, etc. It's long been part of aquarium "culture" to control, limit, or eradicate these things..to stifle natural processes rather than allow them to play out in our tanks.

However, beautiful things can happen when you meld this understanding with your skills, talents, and a good attitude.

And loving this stuff; embracing it- doesn't mean you're somehow "cool" and are a "rebel" or a visionary or something. It doesn't mean that every single aquarium you do has to be a dark, turbid morass of decomposing leaves and jumbled sediments.

It just means that you have a slightly different philosophy, outlook, and acceptance of some stuff than the majority of aquarists do. Stuff that impacts the way you create aquariums, and which influences the way they operate...and look.

This isn't the best way to run an aquarium.

It's just a way to run an aquarium.

The botanical method is not an excuse for laziness, nor a license to abandon common sense, either. You still have to do some work, and to make the effort to understand why you're doing what you're doing. And yes- Nature will rightfully kick your ass if you try to circumvent her laws. You are entirely to blame if your tank fails...

Ouch! 

Perhaps it's not what you would expect to hear, but it's true. When I do something stupid, take a big risk without considering the consequences, I occasionally get my ass handed to me by Mother Nature. And I'm entirely okay with that. I deserve it. I learn from it. And, yeah- there IS a certain amount of risk to taking a slightly different approach. Sometimes, shit happens even when you're doing what you feel is the right thing.

Not everyone wants that. It's 100% understandable. Yet, it's what you expose yourself to when you really "...stand with Nature!"

And, there's also the way we look at things that most hobbyists view as "problems." 

When people are going through "stuff" in their tanks, like algae blooms, etc., tradition in the hobby dictates "corrective action" taken by the aquarist. It's seen as a huge problem. It needs to be corrected. Often times, if we look at the "problem" objectively, it's simply Nature responding, as She has for eons, to a set of parameters which favor one life form over another. Our version of "corrective action" is to find out what is causing the "undesired" issue, and simply allowing natural processes to help bring things back into a normal balance.

As we've discussed many times before, often, our "corrective actions" to "solve" some sort of "issue" usually involves...doing nothing. Yeah. Just waiting it out. Letting Nature correct things and bring the aquarium back on course- just like She's done in the wild aquatic habitats for millennia. Asking ourselves if what we are seeing is really a "problem" in the overall scheme of Nature- or just a "problem" to us as hobbyists, because we've labeled it as such.

It can be tough to wrap your head around that. Particularly after generations of hobby wisdom and practice telling you otherwise. Again, it's a mental shift that I couldn't possibly expect everyone to make or embrace. 

And you still have to apply some old-fashioned common sense to this approach...It's not, "stand by and watch as your aquarium bites the dust..."

In real problematic cases-extreme situations, like disease outbreaks, ammonia spikes, temperature drops, poisonings, etc.- intervention by the hobbyist is the absolute right call.

Standing by, waiting for an infectious disease to "run its course", is ridiculous. Assuming that the disinfectant that your housekeeper accidentally spilled in the tank will simply "work its way out of the system" is insane. However, for a bloom of biofilms, some cloudy water that can't be attributed to mismanagement on your part, or a little bit of algae, "waiting it out" is the best way to go in many cases, IMHO.

Many of these things we call "problems" are simply life forms reacting to opportunities and resources available to them. Nature seeks to balance things out, and these things are often a sign that Nature is "working on it.." Often, the "solution" we employ creates some other imbalance, and fails to contemplate that the "problem" is simply NOT a problem in the first place.

I've said it a hundred times and I'll say it again: I think that many of the things we label as "problems" in the aquarium problem receive that label because of the way they appear. Things which don't fit some hobby-imposed standard of aesthetics get labeled as "problems." IMHO, that's an absurdly incorrect, downright irrational point of view.

Looking at things we're unfamiliar with, or that we find unattractive because of hobby "norms" as "problems" deters us from evolving and moving ahead, IMHO. It sets up artificial "roadblocks" on our journey that aren't always necessary.

We need to look at these things as opportunities. Yes, opportunities to figure out what role they play in the ecology of natural aquatic ecosystems- and in our aquaruims. We need to look for ways to incorporate, rather than eliminate them from our tanks. 

Because when we incorporate natural processes and functions into our tanks, we're doing the very best possible job at advancing the "state of the art" in aquarium keeping. More than we ever could by studying some rock arranging technique or sharing how to glue wood pieces together to achieve a certain "look."

This position will not win me any friends in some corners of the larger aquarium community. It will definitely anger almost everyone who's ever written a "How to solve your _________ problem"-type article for beginners, and it will certainly piss off some manufacturers of "solutions" for all sorts of "problems" with our aquariums.

Why? 

Well, first, because it's wildly unorthodox. 

It is a sort of different take on being proactive in the hobby. Our version of "proactive" is to set up your aquarium to work with Nature from the start- to allow Her the "space" to do her thing. It's not designed to employ numerous technical "props", additives, and complex procedures at every step. One thing we do recommend, however, is to perform regular small water exchanges on your aquariums. They make sense, especially in a closed ecosystem such as an aquarium. That's one "tradition"- and apparently not a popular one with many hobbyists- that we are behind 100%! (It figures, right? We embrace the most unpopular "tradition" in the hobby!)

We espouse studying natural aquatic habitats- their influences and functions- and how they formed, as the "model" for our aquariums. Anyone can tell you to "use this filter", "add this additive", etc. Only Nature can tell you, with authority, to allow THIS or THAT to occur in your aquarium, because that what She wants.

We ceded some of the work to Nature. We accept Her actions. Work with them, instead of resist them.

Yeah, it's a huge mental shift.

Also, it's not popular to advocate for something without some "plug-and-play" solution these days. Telling a hobbyist to study what the cause of the "algae problem" in his or her aquarium could and then to simply "wait it out" or take subtle actions until such time as the system "rebalances" itself is a wildly unpopular approach, I'll admit.

Sure, if you see something obvious- like, you're dumping a whole pack of frozen brine shrimp into your tank at every feeding, you could curtail that ASAP! But embarking on some crazy procedure to exchange 90% of the water in your tank, or scrubbing and siphoning the "detritus" out of every centimeter of sand is, IMHO, a fool's errand, which will only result in a longer "recovery time." (don't get me started on detritus, btw...)

In my opinion, most of what we label as "problems" in the aquarium are the result of environmental lapses or imbalances caused either by something your tank is efficient in- or has too much of. It's that simple. And I believe that there are other ways to tackle these issues than simply reaching for "Product A" or whatever.

Yeah.

That's simply NOT how great botanical-method aquariums are conceived, created, or managed.

They're created to facilitate and take advantage of natural processes- regardless of how they look initially. Function first.

In my (admittedly biased) opinion, a botanical-method aquarium is perhaps one of the best ways to bring Nature into our home! To blur the lines between Nature and aquarium. Really. Sure, planted aquariums give us a similar challenge...but the botanical-method aquarium challenges us in different ways. It tasks us to understand and accept Nature in all of its beauty. And yeah, it makes us accept that there IS beauty in things like decomposition, biofilm, detritus, and algal growth. Things which we as aquarists might have been "indoctrinated" to loathe over the years..

We just have let go sometimes, and trust in Nature to move stuff along the correct path.

Nature finds a way. Nature knows how to do this.

Again- problems are only "problems" if we interpret them as such. When we see something we didn't expect to happen in our tanks occur, the question to ask ourselves might not be, "What's the problem?" Rather, it might be, "IS there are problem?"

Look, it's not like we are trying to create warp drive or foster nuclear fusion. Nothing about the botanical-method approach is even remotely difficult or hard to execute from a technical standpoint. In fact, the only "hard" part of this whole approach is making those mental shifts. Letting go of old notions or preconceptions; that sort of thing.  

Our practice and its underlying philosophy is not really that earth-shattering.

But it is an example of an approach- one of many in our hobby, which simply requires us to look at what exactly we want to accomplish, understand what it is just a bit, and to develop a mind set and practical procedures to work within the requirements and parameters laid out by Nature- in our aquariums. It's still very much a "work in progress", but we're well on the way to making truly natural, botanical-method aquariums far more common in the hobby. 

Perhaps not traditional...but very exciting!

We can find comfort in forging new paths. What we don't yet know and understand is every bit as compelling as what we do.

Think about that.

Stay thoughtful. Stay creative. Stay curious. Stay driven...

And Stay Wet.

 

Scott Fellman

Tannin Aquatics

 

 

 

 

 

Throwing some light on blackwater...

It goes without saying that the single most important component of our aquariums is also the most obvious...water! As the literal bearer of life and the environment in which our fishes, plants, and other organisms thrive, it's fundamental. it's the reason we're drawn to fishes, not gerbils, Tarantula, or Mice- or whatever other pets people keep!

Yeah, we're into water!

And I dear say that we take it for granted a bit.

Now, sure, some hobbyist rightfully place the importance of good quality, properly-conditioned water at the very top of their "want list" of "Stuff" required for successful aquariums. These are often fish breeders and very serious hobbyists, who understand the fundamental importance of good water for their work.

Some of the most common questions we receive lately are "How much _______ do I need to get my water to look like________?" or "How much_______ is needed to lower the pH in my tank?" Or, "How much do I need to get a good amount of humic substances and tannins into my aquarium?"

I usually respond with a simple, "I don't know."

These are all really good questions. Logical. Important.  I kind of feel like many hobbyists are looking for a plug-and-play "formula" or "recipe" for how to accomplish certain water-conditioning tasks.

I totally get that. But the reality is...there IS no "recipe" for how to do this stuff.

And it sucks, I know.

"Why, Scott? I read that you can just add some of this blackwater extract that you can buy online, and maybe add some catappa leaves, and..."

Stop. STOP. Please, we're just making this painful.

Simply adding leaves or bottled extracts to your tap water isn't going to result in "Instant Amazon" or whatever. There are numerous complexities and nuances which contribute to these habitats that to simply recommend adding "X" to your water isn't the whole story.

There are so many variables in the equation that it's almost impossible to give a definitive answer. And yeah, us guys in the botanical biz haven't really helped the situation. Over the years, vendors who sold catappa leaves, for example, would recommend starting amounts ("three leaves per 15 liters of water" or whatever...) of botanical materials to use in aquariums.

I mean, we've sort of done it, too...And, although our recommended "dosage" of leaves was given for different reasons (to avoid adding too much material to your tank too quickly), the idea of a "recipe" in general is kind of delusional, IMHO.

Now, this was all well and good, but it's based on....what? I mean, is this based on how many leaves of _______ size that a typical hobbyist with a 10-gallon aquarium needs to get the water "looking brown?" Or to lower tap water with a starting pH of 7.4 and a KH of ___ to pH of 6.9? Or to impart "x" ppm of tannins or humic substances into this given quantity of water?

See? Add to this story the fact that you really can't soften water and make it more "malleable" by using botanicals or extracts alone, and you've got a good case for confusion! It's just not that simple.

Maybe we can gain a bit of understanding- or at least, an appreciation for the dynamics of this process, by looking once again to Nature.

Have you very thought about how water reaches all of the wild aquatic systems of the world? I mean, it's got to get there some way, right? So, how does it reach the ponds, lakes, streams, and rivers and forest floors of the world?

Well, some simply falls into the body of water directly from the sky, and that's that. Some is a result of other overflowing streams and rivers (like, ya' know- those flooded Igapo forests we talk about!). Inputs of precipitation falling over the area of an aquatic habitat are transferred to the habitat via a number of different pathways.

It's surprisingly complicated.

There's like a whole field of science devoted to studying this process! It's called Hydrology, and it's incredibly interesting...As fish geeks, we're probably already acquainted with this field of study, at least tangentially! 

So, water comes from a variety of sources, reaching a myriad of ecological niches. However, not all of the water has such an easy journey on its way into our favorite aquatic habitat!

Even in the case of rainwater, some of it simply lands on tree leaves in the surrounding area and evaporates. This is a process scientists call "interception", and accounts for the fact that not all water makes it to the ground. Water that does reach the ground enters the soil through a process called infiltration. slowly percolating down to soil areas known as the "saturated zone"- and as you'd imagine, this is where the fun really begins! (to a soil geologist, at least!)

The soil properties control the infiltration capacity; these include things like soil permeability, the presence of vegetation and plant roots, and how much water is already in the soil. Through what is known as "ground water flow", ultimately, the water finds it way into our favorite aquatic habitats. It's important to note that soil texture ( the relative proportion of sand, silt and clay particles within the mix) affects infiltration rates. 

Sandy soils like the "podzols", common to forested areas of South America that we've talked about have higher permeability than some clay-based soils. In some really arid areas a "crust" can form on the soil surface, decreasing the permeability. And of course, the thickness of the soil directly affects how much water the soil can actually absorb.

And, in many cases, the substrate composition and its relationship with water has direct impact on the life forms which inhabit these aquatic systems. In the case of some habitats, like vernal pools, which are filled with water seasonally, the substrate is of critical importance to the aquatic life forms which reside there.

Yeah, soils and geology are perhaps the primary driver of water composition in Nature. 

Let's talk more about "blackwater."

In a blackwater environment, the color is a visual indicator of an influx of dissolved materials that contribute to the "richness" of the environment. Indeed, a blackwater environment is typically described as an aquatic system in which vegetation decays, creating  tannins that leach into the water, making a transparent, acidic water that is darkly stained, resembling tea.

But, that's not the whole story, really.

It’s important to really try to understand the most simple of questions- like, what exactly is “blackwater”, anyways?

A scientist or ecologist will tell you that blackwater is created by draining from older rocks and soils (in Amazonia, look up the “Guyana Shield”), which result in dissolved fulvic and humic substances, present small amounts of suspended sediment, and characterized by lower pH (4.0 to 6.0) and dissolved elements, yet higher SiOcontents. Magnesium, Sodium, Potassium, and Calcium concentrations are typically very low in blackwater. Electrical conductivity (ORP) is also lower than in so-called "whitewater" habitats.

Tannins are also imparted into the water by leaves and other botanical materials which accumulate in these habitats.

 

The action of water upon fallen leaves and other botanical-derived materials leaches various compounds out of them, creating the deep tint that many of us are so familiar with. Indeed, this "leaching" process is analogous to boiling leaves for tea. The leached compounds are both organic and inorganic, and include things like tannin, carbohydrates, organic acids, pectic compounds, minerals, growth hormones, alkaloids, and phenolic compounds.

Most of the of the extractable substances in the surface litter layer are humic acids, typically coming from decaying plant material. Scientists have concluded that greater input of plant litter leads to greater input of humic substances into ground water.

In other words, those leaves that accumulate on the substrate are putting out significant amounts of humic acids, as we've talked about previously! And although humic substances, like fulvic acid, are found in both blackwater and clear water habitats, the organic detritus (you know, from leaves and such) in blackwater contains more extractable fulvic acid than in clearwater  habitats, as one might suspect!

The Rio Negro, for example, contains mostly humic acids, indicating that suspended sediment selectively adsorbs humic acids from black water.  The low concentration of suspended sediments in rivers like the Rio Negro is one of the main reasons why high concentrations of humic acids are maintained. With little to no suspended sediment, there is no "adsorbent surface" (other than the substrate of the river, upon which these acids can be taken hold of (adsorb).

When you think about it, all of this this kind of contributes to why blackwater has the color that it does, too. Blackwater in the Amazon basin is colored reddish-brown. Why? Well, it has  those organic compounds dissolved in it, of course. And most light absorbtion is in the blue region of the spectrum, and the water is almost transparent to red light, which explains the red coloration of the water!

And many of those organic compounds come from the surrounding land, as touched on above...

In summary, natural "blackwaters" typically arise from highly leached (tropical) environments where most of the soluble elements in the surrounding rocks and soils are rapidly removed by heavy rainfall. Materials such as soils are the primary influence on the composition of blackwater.

Leaves and other materials contribute to the process and appearance in Nature, but are NOT the primary “drivers” of its creation and composition.

 

So, right from the start, it’s evident that natural blackwater is “all about the soils…” Yeah, I'll repeat it again: It’s more a product of geology than just about anything else. 

More confusing, recent studies have found that most of the acidity in black waters can be attributed to dissolved organic substances, and not to dissolved carbonic acid. In other words, organic acids from compounds found in soil and decomposing plant material, as opposed to inorganic sources. Blackwaters are almost always characterized by high percentages of organic acids.

Despite the appearance, as a general rule, blackwater rivers are lower in nutrients than clear rivers. Wouldn't it be interesting, when contemplating more natural biotope/biotype aquariums, to study and take into consideration the surrounding geology and physical characteristics of the habitat?  Too recreate the habitat based on the soil or geological composition of the surrounding terrestrial environment?

As we know now, the influence of factors like soil, and the presence of terrestrial materials like seed pods, leaves, and branches play a huge role in the chemical composition and appearance-of the water. It's really no different in the aquarium, right?

Like so many things in nature, the complexity of blackwater habitats is more than what meets the eye. Chemically, biologically, and ecologically, blackwater habitats are a weave of interdependencies- with soil, water, and surrounding forest all functioning together to influence the lives of the fishes which reside within them. No single factor could provide all of the necessary components for fish populations to thrive.

To damage or destroy any one of them could spell disaster for the fishes- and the ecosystem which supports them. It is therefore incumbent upon us to understand, protect, and cherish these precious habitats, for the benefit of future generations. 

And with regards to our aquarium work?

Although there may even be breakthroughs in terms of blackwater extracts and additives coming to market, there are still a lot of questions that would have to be answered before we could simply state that "X" drops per gallon of such an such a formula would yield a specific outcome. This reminds me of the reef aquarium world more an more, lol.

So, if I've made any "argument" here, it's that this stuff is every bit as much of an "art"- in terms of aquarium keeping- as it is a "science." We will, at least for the foreseeable future, have to use the data we have available and formulate a best guess as to how much of what can give us some of the impacts we are interested in for our aquariums.

We simply can't authoritatively make blanket statements like, "You need to use "X" catappa leaves per gallon in order to recreate Rio Negro-like conditions in your aquarium!" We can't simply state that you can throw in some podzolic soil and achieve blackwater, either. There are many factors in play, as we've discussed here, right?

Marketing hyperbole aside, we really are sort of...guessing.

And that's certainly nothing to be discouraged about!

We, as a community, are getting deeper into the functional aspects of blackwater, botanical-style aquariums than ever before. More light is being shed on what's going on in both our aquariums and in the natural habitats we desire to replicate. We are learning more every day about how the presence of tannins and humic substances in our aquariums is affecting the health, longevity, and spawning behaviors of our blackwater fishes.

We're learning about the challenges and realities of managing blackwater systems over the long term- understanding the good, the bad, and the dangerous possibilities that are present when we experiment with these ideas.

There is much, much more work to be done..And a lot of talented hobbyists like yourself are out there on the front lines every day, contributing to the body of knowledge that will benefit the hobby for generations!

Stay persistent. Stay bold. Stay open-minded. Stay curious. Stay disciplined...

And Stay Wet.

 

Scott Fellman

Tannin Aquatics 

 

The hobby is easy, right?

Today. I'm sort of taking a contrary stance to what you might typically see in aquarium blogs. Okay, what else is new, right?

My position is this: The aquarium hobby, while not "difficult", is not super easy, either. And quite honest, it shouldn't be super easy. And we shouldn't be 'dumbing it down' so much.

Uh-ohh. Controversy time.

Well, before you go and label me a jackass and pelt me with "Hakkai Stones", think about it: We are creating and managing the entire environment for specialized living creatures. Unlike a dog or cat, which (at the risk of over simplifying things) just needs food and a place to sleep to survive, fishes require a place to live, the proper aquatic environment, including heat, nutrient export, food, oxygenation, and light. We also are responsible for creating a compatible community of animals, understanding the dynamics of the nitrogen cycle, quarantine, acclimation, disease identification and treatment, and a lot more.

Sure, having to master all of these that I things listed out makes it sound like we're freaking genius-level people to be successful. We don't have to be, of course (I mean, look at some of the clowns who are YouTube “influencers” and the drivel they generate...😂)- but we do have to understand and be able to execute successfully on a number of fronts in order not to kill our fishes immediately, don't we?

Now, a little bit of props to the fishes themselves! I mean, they're subjected to a lot of shit before they get to us, right? Wild fishes, especially, undergo a real trial just to get to us: Collection, sorting by the fishers, a few days at a exporter's facility, a flight from their home country, a stint at a wholesaler, then on to the LFS, and finally to you. All the while, adapting to varying conditions, crowding, and little, if any food. When you think about it, it's hard to believe that they survive at all!

 

Back to our gig.

As hobbyists, we're morally obligated to have at least a rudimentary understanding of the requirements which our fishes need to survive and thrive. And, unfortunately, in today's "Insta-fast"  "Everyone can go from zero to hero in three days" social-media-driven hobby, many hobbyists simply don't have that. In fact, if you asked 10 hobbyists some of the most basic aquarium-related questions, such as how the nitrogen cycle works, or what pH means, I'll wager that you'd likely get 3-4 hobbyists who couldn't articulate anything about these topics.

However, if you ask them about the best aquascaping rock, trendy approach, or stupidly-named wood type, I'll bet they'll be able to tell you everything you'd care to know.

That's indicative of a problem. When we accept this level of mediocrity, we're making ignorance of the art and science of aquarium keeping cool.

That's crazy.

We're better than this.

We as hobbyists need to educate ourselves before we leap. Now, at this point, there are likely a few readers/listeners who will be like, "Damn, Captain Buzzkill, you're making it like you have to be a freaking marine biologist to be able to keep tropical fish! WTF?"

My response?

No, I'm not. And pointing out reality doesn't make me a complete asshole. Well, sort of an asshole- but not a complete one! 😆

Seriously, though, there is something really wrong when we have hobbyists trying all sorts of crazy expensive and exotic hobby ideas and equipment, when their fundamental understanding of the aquarium hobby is essentially inadequate.

Like, we've created a generation of hobbyists who want to run before they can walk. They're always looking for "hacks" and shortcuts for "making things easier." And when they fail- they have no way to understand why. And they often quit the hobby as a result. I've seen this dozens of times during my hobby "career." And we- the industry, creators, and communicators of the aquariums hobby- are responsible for this.

Now look, I'm all for making things easier, but NOT for dumbing down stuff. It shouldn't be like having to take board examinations in order to keep a fish tank, and setting up and caring for a tank shouldn't always be onerous- but you should at least try to have a working knowledge of a bunch of fundamental topics before you plunk down your cash and put fishes' lives on the line, right? And you should want to. And we as hobbyists should be interested in learning and acquiring the basic skills necessary to assure a good start in the hobby. We don't need to make this a task; we just need to do a little basic research first. 

This is where the local fish store can excel.

The "mentoring" you can receive from a quality fish store is one of the best first exposures you can have to the art and science of aquairum keeping. As long as they don't take a purely sales-oriented approach to things (and most don't, despite the popular, persistent hobby mythology of the buffoonish, ignorant, and predatory LFS personnel that have been the stuff of online lore for decades now). Most LFS staff are uber hobbyists, obsessed with aquariums and fishes, and have a vested interest in seeing their customers succeed.

For those who need to get their "education" online, there are a lot of good resources. I don't need to rehash that. However, despite its popularity and search ability, YouTube isn't always the best source. There ARE a lot of great channels out there, but there is also a disproportionately high number of outright garbage, too. Channels in which the "creator" seems to have absolutely no clue about the topic he/she is authoritatively spewing. In our own sector alone, I've seen this several times. It's vomit inducing. 

And a lot of the stuff out there- even "sponsored content"- is about drivel...doing a certain scape with this cool rock, or how to arrange wood so that your tank looks like everyone else's', or something equally as vapid. There is proportionately little produced about fundamental hobby stuff.

We can't run from some of the science stuff...I mean, we are ALL at the mercy of the nitrogen cycle, for example, and we need to have at least a basic understanding of how it works and what the implications are for our aquarium work. It's actually really important!

When I co-owned a coral propagation/import business, a scarily high percentage of the questions from customers were frighteningly basic- like stuff you should know before you ever even buy any aquarium, let alone set up a reef tank.

Fundamentals.

Back in those days, I literally received calls from hobbyists who didn't have the most rudimentary understanding of the needs of corals, let alone, the nitrogen cycle- yet they spent tens of thousands of dollars outfitting their reef tank with the latest gear, and buying the latest "designer frags."

it was head-scratching, to say the least. It was downright discouraging on some days.

It's not just limited to the reef world, of course. It’s all over the hobby. 

And, it's our fault as an industry, too.

We seem to sell prepackaged "solutions" for everything. Another piece of gear, another additive..."That'll solve your problems!" We seem to be happier just selling people a product that we hope will solve their problems. Laughably, I've seen soem vendors/manufacturers trot out the pathetic line about their product making things easier so you could "enjoy the hobby more!" Like, WTF? Isn't feeding your fishes, doing water exchanges, and just managing the tank part of what makes it enjoyable, too? Or is the only enjoyable part of the hobby humble-bragging on The 'Gram about our latest aquascape?

How about we educate people on the basics and beyond? The good, the bad, and the shitty? That will make the use of your product a lot more logical. Yet, I know- it takes time. It's more difficult to educate people on the underlying problem...the reason why people would need your product in the first place. It's much easier to just tell them what to buy and that's that. It sells stuff faster. But it doesn't build a long-term hobbyist. That's why we at Tannin have article after article on the most basic, and even arcane aspects of playing with blackwater/botanical-style aquariums on our site.

Because I believe that hobbyists have to be armed with the most fundamental knowledge of our craft in order to succeed. I'm not going to just show pretty pics of cool 'scapes and sell seed pods and leaves that way. That's how I'm going to do my part to address the hobby dropout thing. My friends James of Blackwater UK and Ben of Betta Botanicals, two vendors as geeked out as I am about this stuff, are on the same page as me. We're determined to show hobbyists that the process- the whole thing- is as much fun as just looking at the number of likes your tank pics get on your fave social media channel.

It's a wider hobby "cultural problem", too. We're lazy. A lot of us want instant gratification and simply don't want to take the time to dig through information- even if it's out there in abundance. They want it easier. Faster. More concise.

And yes-I know. Everyone is "busy", etc. Yet, why have a hobby in the first place if you don't want to spend time playing with it and educating yourself about it? People can't be lazy. They have to learn the underlying, fundamental stuff. They need to read, watch, discuss, observe. A personal example again? I get numerous emails asking me how to prepare botanicals- even after we spent hundreds and hundreds of dollars on producing a customized infographic card that goes in every order, and years writing dozens of articles on this very topic.

Some people seem so unwilling to do the most basic research! What a shame.  I mean, Google is one of the greatest inventions in the history of humanity, making information about virtually any topic imaginable available anywhere, any time, to anyone. Easily.

Yet, many figure the "hack" is just to ask someone and expect them to give concise answers on how to do everything, instead of taking the extra time to educate themselves a bit before just mailing it in and prodding someone else for the answer. Yeah, we've somehow decided that a DM to someone for a “quick answer” is a better way to acquire knowledge than typing in the keywords, like "what is the nitrogen cycle?" and learning it once and for all. 

Obviously, as an industry guy and writer- I'm always going to help those with questions when I can...But I also need to encourage self-research, too. I still need to do better at disseminating information. We all do.

There's blame enough to go around. And to newbies and others in the hobby-my plea to you:

Don't be freaking lazy. The resources are there.

We just have to keep directing people towards them. And people need to use them. And we have to emphasize the fundamentals of the hobby. Not just the cool creative stuff. Sure, not everyone is great at conveying technical concepts to people in an easy-to-understand manner. However, we can try, Because, when no one is doing that, we end up with 14,000 channels on how to "scape a blackwater aquairum" and not a single one explaining what the hell blackwater is, and how to manage the ecology of a blackwater system.

That's a problem, IMHO.

Everyone wants to do the "fun" stuff, hype their sponsors' products, and get all of that recognition. Yet, without discussing the less sexy fundamentals, the "fun stuff" just becomes a waste of precious animal lives and lots of money. People get frustrated and quit the hobby. When I see the words "paid partnership" under an Instagram post lately, I almost reflexively (and often correctly, I'm afraid) assume that it's usually drivel. Because most of the creators- and the brands who sponsor them- have accepted a level of superficiality as the norm. And that's really sad. These people are too talented to waste their followers' precious attention- and their sponsor's money- by producing such mindless fluff.

The "creative" and "trendy" is valued over the substance, even by brands. And the irony is that doing a little more substance in a creative manner is what will sell more product and build a stronger brand in the long run. Yet, it's easier to just pay some "creator" do a fun little video with a bit of hip-hop music, the appropriate sponsor hashtags, and consider it a job well done.

I call bullshit on that.

Brands need to stop paying these "creators" for this garbage.

You can still be creative and edgy and cool while conveying complex or arcane topics... Hell, we do it all the time here (so modest, right?).

Yes, even in the social media "Insta-hype" world we're in, there is room for improvement. I've hit this hard before...we all show too much "finished product" with killer aquascapes and such, and not enough of the less sexy, although way more important process...

There is an easy fix for that one. Just share the process. 

Discuss the fundamentals of what you do.

When hobbyists realize it's not just "1-2-3 AWESOME!"- and that there is a little work, and occasional setbacks and struggle involved, expectations are set which assure people go in with their eyes wide open...and stay in. Expectation management via education. And there is a certain responsibility that we as hobbyists take on when keeping live fishes; this needs to be emphasized.  And guess what, fellow aquarium brands? They'll still buy your product. In fact, they'll probably be more likely to, because they will have a fundamental understanding for why they need it.

No. The aquarium hobby isn't that easy.

But it's not ridiculously hard, either. 

We have a responsibility as hobbyists to keep these precious creatures alive and happy. And we as hobby and industry people have an obligation to tell it like it is. To touch on fundamentals. To explain things. To convey that, while not overly complex, some the underlying information that you need to know to be successful in the hobby is vital. Even if it requires a bit of reading and discussion in order to grasp it. And that it's every bit as interesting as selecting the right stones for your next fantasy 'scape.

In our world, there is a reason why we talk so much about ecology and arcane things, like the idea of allochthonous input into wild aquatic habitats. There is a reason why we devote hundreds of thousands of words to subjects like fungi, biofilms, and detritus. It's because an understanding of these topics is foundational to the work we do as botanical-style aquarium enthusiasts. When you understand these things, you're better equipped to understand what's happening in your aquairums. 

It would have been much easier for me if I spent the last 6 years writing articles and doing podcasts on how to get the sexy look of a botanical-style aquarium. Yet, it would have left us simply another hollow, vapid purveyor of leaves and seed pods, passing the buck to someone else to cover these ideas, develop the operating fundamentals and philosophies which are applicable to the botanical-style aquarium methodology.

Not on my watch.

I'm going to continue discussing some of these seemingly arcane topics. Why? Well, for several reasons. First, because someone has to do it. Might as well be me; I play with this stuff every day of my life. Second, because it's so important to convey these fundamentals. It builds a movement and reinforces the methodology we all embrace. Third, because I feel that I have a responsibility to the hobby, and to the fishes we love. And finally, because it's hard. It's not easy to distill these complex ideas into digestible information. And that very fact makes it a worthwhile endeavour.

We all need to learn, understand, and share these types of topics.

Success in the aquarium hobby isn't that difficult- after you have a grasp of the fundamentals; an understanding of why we do what we do. However, the hobby isn't "easy" in the sense that you just toss your fishes into the water and call it a day. It takes some work. It should take some work. Because taking care of live animals, some of which are threatened in the wild, is a huge responsibility which should not be taken lightly.

So, maybe the tone of this piece is a little bit dark to some. It shouldn't be interpreted that way. Rather, it's a brutally honest call for us to make a better effort to understand and appreciate just how amazing what we as aquarists do every dingle day, and what responsibility goes along with these achievements. It's a call to wake up- look ourselves in the mirror as hobbyists, content creators,  and industry types- and do better.

We can. There is enormous talent out there- and there has never been a time in history when its easier to disseminate useful information to a larger number of interested persons. 

We just have to DO it. To not shirk this responsibility- and this gift.

It's not as hard as you think, and the benefits of the effort are remarkable.

Stay honest. Stay reflective. Stay creative. Stay observant. Stay inspired...

And Stay Wet.

 

Scott Fellman

Tannin Aquatics 

 

 

Accumulating botanical materials...and mental toughness!

They say that Nature abhors a vacuum...

Nature also seems to like to accumulate stuff, doesn't it? 

Natural watercourses are really good at accumulating terrestrial materials, creating inviting habitats for fishes. They serve not only as physical locales for fishes to forage an hide amongst, they provide a huge habitat for a variety of other organisms which support the fishes.

And of course, these are compelling aquatic features for us fish geeks to replicate in our aquariums, aren't they? They are, and perhaps provide the basic "role model" for the botanical-style aquairum.

These aggregations of materials occur all the time in Nature, and they're caused by a variety of things; typically, weather events, which drive materials off of the trees overhead, or from the surrounding terrestrial habitats into the water. Currents caused by rising water levels move the materials along, until they might be caught up among various benthic features, like fallen trees, branches, rocks, etc.

Yeah, as you'd imagine, stream and river bottom composition is completely affected by things like weather, current, geology, the surrounding terrestrial habitat, and a host of other factors- all of which could make planning your next aquarium even more interesting if you take them into consideration! 

According to one study I read, eventually, most of the organic debris is deposited on the stream bottom or drifts downstream until it becomes trapped by a variety of natural obstacles.

If we focus on streams, it's important to note that the volume of water entering the stream, and the depth of the channels it carves out, helps in part determine the amount and size of materials which accumulate, as well as the sediment particles that can be carried along, and thus comprise the substrate of this habitat. .

And of course, the composition of bottom materials and the depth of the channel are always changing in response to the flow in a given stream, affecting the composition and ecology in many ways.

Some leaf litter beds form in what stream ecologists call "meanders", which are stream structures that form when moving water in a stream erodes the outer banks and widens its "valley", and the inner part of the river has less energy and deposits silt- or in our instance, leaves.

There is a whole, fascinating science to river and stream structure, and with so many implications for understanding how these structures and mechanisms affect fish population, occurrence, behavior, and ecology, it's well worth studying for aquarium interpretation!  Did you get that part where I mentioned that the lower-energy parts of the water courses tend to accumulate leaves and sediments and stuff?

Likely you did!

Permanent streams will often have different volume and material composition (usually finely-packed sands and gravels, with lots of smooth stones) than more intermittent streams, which are the result of inundation caused by rain, etc.

So-called "ephemeral" streams, typically occur only immediately after rain events (which means they usually don't have fish in them unless they are washed into them from more permanent watercourses). The latter two stream types are typically more affected by leaves, botanical debris, branches, and other materials.

In the Amazon region (you knew I was sort of headed back that way, right?), it sort of works both ways, with the rivers influencing the surrounding land...and then the land "giving" some of the materials back to the rivers...the extensive lowland areas bordering the river and its tributaries, known as varzeas (“floodplains”), are subject to annual flooding, which helps foster enrichment of the aquatic environment.

Land and water, working together, provide and amazing resource for the adventurous and interested hobbyist to explore in greater detail.

The important, and overriding Thieme of many aquatic habitats which we try to replicate in the hobby is that they accumulate quantities of terrestrial materials. These materials don't just impact the physical characteristics of these habitats, they influence the ecology as well. As we know by now, terrestrial materials, when submerged in water, leach soluble compounds into the water, impacting the chemistry.

They also tend to recruit fungal growths and biofilms, which in turn serve to not only decompose the terrestrial materials- they tend to attract fishes to graze upon them! Terrestrial materials form the basis of a rich, surprisingly complex aquatic ecology. A food web arises.

So, what exactly is a food web?

 

A food web is defined by aquatic ecologists as a series of "trophic connections" (ie; feeding and nutritional resources in a given habitat) among various species in an aquatic community. 

All food chains and webs have at least two or three of these trophic levels. Generally, there are a maximum of four trophic levels. Many consumers feed at more than one trophic level.

So, a trophic level in our case would go something like this: Leaf litter, bacteria/fungal growth, crustaceans...

In the wild aquatic habitats we love so much, food webs are vital to the organisms which live in them. They are an absolute model for ecological interdependencies and processes which encompass the relationship between the terrestrial and aquatic environments.

Interestingly, in streams, the primary producers of the food webs that attract our fishes are...algae and diatoms, which are typically found on rocks and wood wherever light and nutrients create optimum conditions for their growth. Organic material that enters streams via leaf fall is acted upon by small organisms, which help break it down.

It is probably no surprise, then, that bacteria (especially in biofilms!) and fungi are the initial consumers of the organic materials that accumulate on the bottom. Like, the stuff many of us loathe. These, in turn, are extremely vital to fishes as a food source. Hence, one of the things I love so much about utilizing a leaf litter bed as a big part of your substrate composition in an aquarium!

We are able to establish rudimentary food webs in our aquariums. It's pretty easy, if we don't try to clean the crap out of our tanks and remove every bit of organic matter which we deem offensive to our aesthetic sensibilities! Remember, all of that material which we freak out about is someone's next meal, isn't it? It's consumed. The various organisms which arise when we allow leaves, branches, seed pods and other materials to accumulate and decompose in our tanks help see to that.

Yes, aquariums are different than wild aquatic habitats, but they have many characteristics which are analogous to them. And, sure, we typically don't maintain completely "open" systems, but I wonder just how much of the ecology of these fascinating habitats we can replicate in our tanks-and what potential benefits may be realized?

I'm willing to bet that it's a lot more than we think. However, we have to start somewhere, right?

It all starts with adding and accumulating terrestrial materials in our tanks, and allowing an ecology to grow up around them. It's that simple- and that complex, right? It falls on us- the hobbyists- NOT to go crazy and try to intervene too much. We need to exercise restraint- to let the natural processes which power our aquariums arise, assemble, and thrive.

Hands off! 

That's my continuing challenge to our community..

Yeah, we have to let stuff go a bit. It's really hard for a lot of hobbyists to do this. We're essentially trained from the beginnings of our aquarium experience to scrub, polish, and siphon out everything which doesn't meet some definition of "acceptable."

We've been told that algae growth or fungal growths on our wood or substrate are bad, and must be removed. We've been encouraged to siphon out any decomposing materials, and that stuff like detritus is the source of untold disaster if we let it accumulate in our tanks.

It's hard to make this mental shift. I know. I've been trying to convince people to take this path for the better part of the past decade, and it's finally catching on. Skeptics and haters abound- more than ever, now, as these ideas have gained traction in the aquarium hobby.

It's 100% counterintuitive to everything we've been indoctrinated to believe. And worse, we're asking you to have faith that "stuff will work out" in your tank when you see all of this biofilm and fungal growth, turbid water, decomposition, and perhaps even algae. Stuff that the so-called "Nature Aquairum" crowd would absolutely shit their pants over. 

Well, this IS Nature, boys and girls. 

This is Planet Earth.

And yeah, you're actually not 100% in control. It's not the sanitized, organized, highly stylized "Nature" of your fantasies. It's the "Nature" that's perfectly imperfect, filled with non-ratioed, seemingly disorganized aggregations of materials, and life forms covering everything. You have to cede some of the work in your tank to Nature. You'll "go through some things." Some of the stuff you'll see will be "ugly" to you.

Or, will it be?

Will you perhaps study some of the wild aquatic habitats of the world where our fishes come from, see what makes them function the way that they do- and draw a parallel between what you're seeing in your tank, and what you're seeing in Nature?

 

Will you hang on?

Will you "wait out" what appears to be an endless explosion of gooey stringy stuff coming out of your leaves, wood, and  and botanicals, and allow your tank to achieve it's own form of equilibrium? Or, will you reach for the siphon hose and pull it all out, disrupting some of Natures's most elegant, valuable, and efficient processes in order to "re-set" and achieve some sort of "instant gratification" that you were told that a spotless, sterile-looking tank will provide?

Yeah. Re-setting the whole thing.

Doing things the way we've done them in then hobby for decades because they give you the predictable results in a short amount of time...

Or, will you see the real beauty of unedited Nature in your very own tank? And the amazing way Nature works it out...If you let Her.

 

That's the adventure- the challenge of the botanical-style aquarium. A methodology filled with inexact, unconventional, yet well-known natural processes. A methodology which asks you to make some leaps of faith, some educated guesses, and to play some hunches. An evolving, not entirely predictable path to a dynamic, truly remarkable aquarium.

You can do this. You might fail, but you'll likely succeed, especially if you put your faith in Nature.

Be strong. Be patient. Be experimental.

Hang on through the weird, uncomfortable, uncertain, unknown stuff. It's worth it. 

Stay bold. Stay open minded. Stay curious. Stay the course...

And Stay Wet.

 

Scott Fellman

Tannin Aquatics 

 

 

 

 

 

 

 

The commendable power of restraint.

One of the things that we find ourselves doing in the aquarium hobby is using " a little of this and that" in our tanks, because-well- because we seem to be fixated on lots of variety of "stuff" in our tanks, right?

I mean, there is nothing wrong with using a diversity of materials in our aquariums to express our creativity, and I DO own a company which sells a significant variety of natural aquascaping materials...However, I think it's important to consider exactly what it is we're trying to accomplish in our tanks when we select and employ botanical materials in our aquariums.

Huh?

As we've discussed a lot around here, the idea of using natural materials, like wood, leaves, seed pods, and roots is a faithful representation of many of the wild habitats we obsess over. And more important, it's a functional methodology of fostering natural processes and a healthy ecology in our tanks.

Are you simply trying to add some aquascaping interest to your tank? Are you interested in manipulating the aquarium water chemistry? Perhaps you're attempting to replicate a very specific ecological niche? Setting up a system for breeding fishes or rearing their fry?

There are many, many applications for botanicals in aquariums. A wide range of things you can do with them, and an even wider range of botanicals to do the job. And the most important "job" for botanicals in our aquariums, IMHO, is to foster the ecology of the aquarium...The so-called "microbiome."

And the important thing to know in this context is that you don't have to use 25 different botanicals and leaves in your aquarium to achieve this ecology within your tank. The reality is that, organisms like fungal growth, bacteria, Paramecium, and other microfauna are typically not tied to a specific leaf or seed pod, so not having a huge variety doesn't mean that you won't be able to achieve a significant microbiome within your tank.

So from a "biodiversity" or ecological standpoint, there is no reason why you would need a huge variety of botanicals in a given aquarium. It really boils down to aesthetics. Or, if you're trying to be more "biotopically accurate"- it depends upon the variety of materials that you'd expect to find in the habitat you're interested in replicating.

For example, a flooded forest might have a lot more ( in both density and variety) leaves and seed pods than say, a fast-flowing river, stream, or a small oxbow lake might have. Other locales might simply have a lot of a few materials, like branches and leaves, but minimal amounts of seed pods and other materials. 

Maybe you're not trying to replicate any specific habitat at all. Perhaps it's simply a creative expression with botanicals. That's fine. You can use as many or as little as you want...and you still get the "functional" aspects if you don't "edit" them!

How your botanical-style aquarium looks and (to a lesser extent, functions) is dependent upon these types of characteristics. Yet, it's really a matter of what works best for the aquarium that you are trying to create. The power of restraint is a very important factor when playing with botanicals!

Now again, with all of the cool botanical materials available to hobbyists here and elsewhere, it's certainly fun to use a large variety of different materials in your tank! I personally have always been of the opinion that too much variety in a given tank is sort of distracting and just somehow doesn't always look good. I mean, it certainly can..it just doesn't always! Somehow, using a little less variety in a given tank seems to just look a bit better, IMHO.

However, as we've mentioned already, if you're replicating a specific habitat that might have a wide variety of materials in a given small locale, it makes sense, right?

And there is the benefit of a field of botanicals not only cultivating microbial and fungal food sources for fishes, there is the direct consumption of the botanicals (or their constituent materials) by fishes.

Yes, direct consumption of botanicals by fishes is something that we haven't talked all that much about over the years here.

It's long been known that many species of fishes, particularly Panaque/Panaqolus and some Hypostomus/Cochliodon love botanical stuff. These species are equipped with teeth specifically "designed" to gouge wood. And there's probably another odd one or two that consume it as well. Now, you should be aware that wood "eaters" don't consume the wood per se, they consume it as a "by-product" of their overall feeding strategy.

(The "business end" of Panaque nigrolineatus by Neale Monks, used under CC BY-SA 3.0)

In fact, some recent scientific studies have corroborated digestive enzyme activity profiles and gastrointestinal fermentation levels in the fishes’ GI tracts, suggesting that the "wood-eating catfishes" are not true xylivores, such as beavers and termites, but rather, are detritivores like so many other fishes from the family Loricariidae.

In fact, the conclusion of one study indicated that "..the fishes’ whole digestive strategy ranging from intake, to passage rate, digestive enzyme activities, gastrointestinal fermentation, and decreasing surface area in the distal intestine suggests that these fishes are geared for the digestion and assimilation of soluble components of their detrital diet.

However, the wood-eating catfishes do take macroscopic detritus (i.e., woody debris) and reduce it to <1 mm in diameter, which likely has significant consequences for carbon cycling in their environment. Given that much of the Amazonian basin is unstudied, and much of it is under threat of deforestation (leading to more wood in waterways), the wood-eating catfishes may play a crucial role in the dynamics of the Amazonian ecosystem, and certainly in the reduction of coarse woody debris."

(German DP. Inside the guts of wood-eating catfishes: can they digest wood? Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology. 2009;179(8):1011-1023. doi:10.1007/s00360-009-0381-1.)

Interesting, right?

And it has some implication for how we keep these fishes in our botanical-style aquariums, right? I mean, we have no shortage of pics of your Plecos tearing into various botanicals, ranging from leaves to seed pods, like the Calotropis pods, Cariniana pods, etc. So, based on the study above, it would suggest that at least part of the pods do form a part of the diet of these fishes, and in the process of consuming them, the fishes are helping enrich the aquarium habitat. 

Now, the botanicals themselves may not be "the whole meal" for many fishes, but the biofilms, algal threads, and other biocover which grow on them do provide foraging for many fishes. A number of us have noticed a wide-ranging variety of fishes, from Barbs to characin to cichlids, feeding actively on the materials on the materials which are "recruited" by submerged botanicals.

This type of activity has led me to postulate that the use of botanicals can perform a definite "feeding support function" for a wide variety of fishes. So, I suppose, one advantage of a variety of botanical materials in one tank is that it increases your chances of having something palatable to someone in the tank!

If you've followed us for any length of time, you're well aware that we are not just pushing you to play with natural, botanical-style aquariums only for the pretty aesthetics. I mean, yeah, they look awesome, but there is so much more to it than that. We are almost as obsessed with the function of these aquariums and the wild habitats which they attempt to represent!

 

 

Understanding why you're choosing to throw botanicals in your aquarium is as important as it is to understand how to employ them. Regardless of how you employ the botanicals, I cannot stress enough the need to go SLOWLY. There is no need to rush and dump everything in at one time, or in huge quantities. Particularly in an established aquarium, where your animals are used to a certain stable range of parameters...It goes without saying that if your introducing materials which can influence water chemistry and quality, you will need to go slow and exercise common sense.

And, since botanicals are actively "breaking down" in your aquarium over their "service lifetimes", it's important to employ good husbandry techniques (i.e.; monitoring of water quality, water changes, regular filter media changes, etc.). Just remind yourself that aquatic botanicals create a "dynamic" environment, and you'll enjoy using them that much more!

Apart from, "What pods should I use for a _____________ style setup?" the most common question we receive is ""Do I leave them in or let them break down in my tank?"

And of course, our simple, likely unsatisfying answer is..."It's your call!"

It's as much about your aesthetic preferences as it is long-term ecological stability of the aquarium. It's a decision that each of us makes based on our tastes, management "style", and how much of a "mental shift" we've made o except the transient nature of a botanical-style aquarium and its function. There really is no "right" or "wrong" answer here. It's all about how much you enjoy what happens  naturally versus what you choose to control in your tank.

I tend to favor Nature. Every time. It's not even close. 

But that's just me.

And of course, we can't ever lose sight of the fact that we're creating and adding to a closed aquatic ecosystem, and that our actions in how we manage our tanks must map to our ambitions, tastes, and the "regulations" that Nature imposes upon us.

Yes, anything that you add into your aquarium that begins to break down is bioload.

Everything that imparts proteins, lignins, tannins, organics, etc. into the water is something that you need to consider. However, it's always been my personal experience and opinion that, in an otherwise well-maintained aquarium, with regular attention to husbandry, stocking, and maintenance, the"burden" of botanicals on your water quality is surprisingly insignificant.

Even in test systems which I intentionally "neglected" by conducting very sporadic water exchanges, once I hit my preferred "population" of botanicals (by building them up gradually), I have never noticed significant phosphate or nitrate increases that could be attributed to their presence.

 

So, once and for all- is adding a bunch of botanicals to your aquarium "dangerous?"

I mean, it could be, in some instances. Like, adding large quantities of fresh botanicals to an established, stable tank all at once is a recipe for problems. But, this is "Aquarium Keeping 101", right? Like, what would you expect that would happen? Why would you even do that?

It's about common sense.

The reality is, adding botanicals to your tank and using them, replacing them regularly, etc, is no more "dangerous" than anything else we do as aquarists. You simply need to go slowly, apply common sense, follow our prep instructions, and observe your tank carefully.

Look, stuff can still occasionally go wrong, even when you follow instructions and employ common sense. Never lose sight of the fact that aquariums are closed natural ecosystems, and changing the delicate ecological balance within them always risks disrupting established biological processes- and that can have consequences for your fishes.

But, you already KNOW that

It's the reality of Nature, and a reminder that, although we can control some things, Mother Nature calls the shots...

So, the power of "chilling out"- the ability to exercise restraint; to not go crazy adding a ton of stuff all at once- is a huge and very, very important skill for all who play with botanicals to acquire. 

I'll bet that you already have.

Stay creative. Stay curious. Stay excited. Stay restrained...

And Stay Wet.

 

Scott Fellman

Tannin Aquatics 

 

 

 

What's the big deal about substrates?

Of all the fun topics in botanical-style aquarium keeping, few hold my interest as much as substrates.

I imagine the substrate as this magical place which fuels all sorts of processes within our aquariums, and that Nature tends to it in the most effective and judicious manner. 

Yeah, I'm a bit of a "substrate romantic", I suppose.😆

Particularly in transitional habitats, like flooded forests, etc. the composition and characteristics of the substrate plays a huge role in the ecology of the aquatic habitat. The presence of a lot of soils, clays, and sediments in these substrates, as opposed to just sand, creates a habitat which provides a lot of opportunity for organisms to thrive.

The substrates are not just "the bottom." 

They are diverse harbors of life, ranging from fungal and biofilm mats, to algae, to epiphytic plants. Decomposing leaves, seed pods, and tree branches compose the substrate for a complex web of life which helps the fishes we're so fascinated by to flourish. And, if you look at them objectively and carefully, they are beautiful.

Detritus ("Mulm") located in the sediments is the major source of energy and/or nutrients for many of these dynamic aquatic habitats. The bacteria which perform all the important chemical reactions, such as converting ammonia to nitrite, nitrates to nitrogen, releasing bound-up nutrients, neutralizing hydrogen sulfide, etc. will obtain  essential nutrients from the detritus (this is what autotrophic bacteria that metabolize ammonia/ammonium or hydrogen sulfide for energy do).

These bacteria may also "harvest" those nutrients, as well as metabolize (aerobically or anaerobically) the organic compounds present in the detritus for energy, just like heterotrophs do.

The processing of nutrients in the aquarium is a fascinating one; a real "partnership" between a wide variety of aquatic organisms.

Yes, there is a lot of amazing biological function occurring in these layers. And of course, fostering this dynamic in the aquarium is one of the things we love the most. It's all part of our vision for the modern, botanical-style aquarium.

Now, hobbyists have played with deep sand beds and mixes of various materials in aquariums for many years, and knowledgable proponents of natural aquarium management, such as Diane Walstad, have discussed the merits of such features in far more detail, and with a competency that I could only dream of! That being said, I think the time has never been better to experiment with this stuff!

Again, we're talking about utilizing a wider variety of materials than just sand, so the dynamics are quite different, offering unique functions, processes, and potential benefits.

I've been thinking through further refinements of the "deep botanical bed"/sand substrate relationship. I've been spending a lot of time over the years researching natural aquatic systems and contemplating how we can translate some of this stuff into our closed system aquaria.

Before we talk about the actual substrate materials again, let's think about the processes that we would like to foster in a substrate, and the potential negatives that may be of concern to those of us who play with botanicals in our substrate configurations

 One of the things that many hobbyists ponder when we contemplate creating deep, botanical-heavy substrates, consisting of leaves, sand, and other botanical materials is the buildup of hydrogen sulfide, CO2, and other undesirable compounds within the substrate.

Well, it does make sense that if you have a large amount of decomposing material in an aquarium, that some of these compounds are going to accumulate in heavily-"active" substrates. Now, the big "bogeyman" that we all seem to zero in on in our "sum of all fears" scenarios is hydrogen sulfide, which results from bacterial breakdown of organic matter in the total absence of oxygen.

Let's think about this for just a second.

In a botanical bed with materials placed on the substrate, or loosely mixed into the top layers, will it all "pack down" enough to the point where there is a complete lack of oxygen and we develop a significant amount of this reviled compound in our tanks? I think that we're more likely to see some oxygen in this layer of materials, and I can't help but speculate- and yeah, it IS just speculation- that actual de-nitirifcation (nitrate reduction), which lowers nitrates while producing free nitrogen, might actually be able to occur in a "deep botanical" bed.

And it's certainly possible to have denitrification without dangerous hydrogen sulfide levels. As long as even very small amounts of oxygen and nitrates can penetrate into the substrate, this will not become an issue for most systems. I have yet to see a botanical-style aquarium where the material has become so "compacted" as to appear to have no circulation whatsoever within the botanical layer.

Now, sure, I'm not a scientist, and I base this on close visual inspection of numerous aquariums, and the basic chemical tests I've run on my systems under a variety of circumstances. As one who has made it a point to keep my botanical-style aquariums in operation for very extended time frames, I think this is significant. The "bad" side effects we're talking about should manifest over these longer time frames...and they just haven't.

We need to look at substrates literally as an aquatic organism. And, like aggregations of organisms, they may be diverse, both morphologically and ecologically. They're a dynamic, functional part of the miniature ecosystems we create in our aquariums. We've used the "basic" stuff for a generation. It's time to open up our minds to a few new ideas. To rethink substrate. To reconsider why we incorporate substrate, and what we use.

What kinds of materials can we employ to create more "functional" substrates (which just happen to look cool, too?). What kinds of functions and benefits can we hope to recreate in the confines of our aquariums?

 

First off, think beyond just sands...or anything resembling "conventional" aquarium substrate. Think about what goes on in the benthic (bottom) regions in the natural habitats we love, and what benefits or support the materials which aggregate there provide for the organisms within the ecosystem.

Understand that the substrate is a dynamic, extremely important part of the aquarium, too. And what we construct our substrate with, and how we manage it, is of profound importance to our fishes!

Fostering fungal growth, as well as other microorganisms and small crustaceans, should be a huge component of the "why" we do this. These organisms, as we've discussed repeatedly, form a part of the "food chain" within our captive ecosystems, and offer huge benefits to the aquarium not only as potential supplemental nutrition for fishes, but as a means to process and export nutrients from within the botanical-style aquarium.

 

So, yeah, in summary- the substrate plays a huge role in the function of a botanical-style aquarium. We can create a "facility" with substrate materials which provides not only unique aesthetics- it provides priceless benefits: Production of supplemental nutrition for our fishes, and nutrient processing via a self-generating population of creatures that compliment, indeed, create the biodiversity in our systems on a more-or-less continuous basis.

True "functional aesthetics!"

A combination of finely crushed leaves, bits of botanicals, small twigs, etc. can form the basis for a more "biologically active" and even productive substrate. As these materials break down, they are colonized by fungi and biofilms, and impart  tannins, lignin, and other sources of carbon into the water to fuel a variety of microbial growth. 

As you might have gathered by now, we are an advocate of some rather "unconventional" substrate materials, particularly a classification what we call "Sedimented Substrates." 

Yeah, that'd be ours. NatureBase "Igapo", "Varzea", and the upcoming "Mangal", "Floresta" and "Selagor", are examples of substrates which have a lot of sediments and clays in their formulation. These substrates realistically replicate the composition, function, and look of soils which are found in many tropical aquatic habitats.

In fact, most of our NatureBase substrates have a significant percentage of clays and sediments in their formulations. These materials have typically been something that aquarists have avoided, because they will cloud the water for a while, and often impart a bit of color. Like, that's a problem? We also have some botanical components in a few of our substrates, because they are intended to be "terrestrial" substrates for a while before being flooded...and when this stuff is first wetted, some of it will float. And that means that you're going to have to net it out, or let your filter take it out.

You simply won't have that "issue" with your typical bag of aquarium sand!

You can mix them with any of the above-mentioned commercially-available sands, or use them alone. You can gradually add water (as in our "Urban Igapo" concept), or simply fill your tank form day one. Expect significant cloudiness for several days as the materials settle out, though. Don't rinse these substrates...just put them to work right away.

Now, although you can (and should) play with these substrates "wet" from the start, I'd be remiss if I didn't remind you again that the igapo and varzea substrates were initially intended to be "terrestrial" for a period of time, to get the grasses and plants going, and then inundated.  

And of course, I'll tell you once again that immediately inundating a sediment-and-clay-heavy substrate can result in cloudiness. Just like in Nature. And it'll pass after a few days.

 

So, yeah, you'll have to make a mental shift to appreciate a different look and function. And many hobbyists simply can't handle that. We've been up front with this stuff since these products were released, to ward off the, "I added NatureBase to my tank and it looks like a cloudy mess! This stuff is SHIT!" type of emails that inevitably come when people don't read up first before they purchase the stuff.  

And the warning and mental shift indoctrinations have worked. No one has freaked out.

Instead, we're hearing how incredibly natural these aquariums look, and how the biological diversity and stability of these tanks are.

What goes on in an aquarium with sediments, botanicals- or leaves, in this instance as the total  "substrate" or "hardscape", as the case may be, is that they become the basis for biological activity in the tank. As we have discussed a million times here, as botanicals break down, they recruit bacteria, fungi, and other organisms on their surfaces.

That's the "big deal" about substrates.

Mix it up. Play with sediments, crushed leaves, broken bits of botanicals..All sorts of natural "stuff" which would previously have been considered "dirty" and "bad for long term maintenance" in almost anyone's book. Look at the advantages that can be realized, instead of the potential risks involved in experimenting.

Open your mind up to accept the look and function- and the "aesthetic challenges" of using non-traditional materials in your substrates. 

Stay creative. Stay excited. Stay bold. Stay studious...

And Stay Wet.

 

Scott Fellman

Tannin Aquatics 

 

1 2 3 Next »