As the seasons pass...

 

Every Corydoras breeder knows something that we all should know:

Environmental manipulations create unique opportunities to facilitate behavioral changes in our fishes.

It's hardly an earth-shattering idea in the aquarium hobby, but I think that the concept of "seasonal" environmental manipulation deserves some additional consideration.

It's been known for decades that environmental changes to the aquatic environment caused by weather (particularly "wet" or "dry" seasons/events) can stimulate fishes into spawning. 

As a fish geek keen on not only replicating the look of our fishes' wild habitats, but as much of the "function" as possible, I can't help myself but to ponder the possibilities for greater success by manipulating the aquarium environment to simulate what happens in the wild.

Probably the group of aquarists who has had the most experience and success at incorporating such environmental manipulations into their breeding procedures is Corydoras catfish enthusiasts! 

Many hobbyists who have bred Corydoras utilize the old trick of a 20%-30% water exchange with water that is up to 10° F cooler (6.5° C) than the aquarium water is normally maintained at. It seems almost like one of those, "Are you &^%$#@ crazy- a sudden lowering of temperature?"

However, it works, and you almost never hear of any fishes being lost as a result of such manipulations.

I often wondered what the rationale behind such a change was. My understanding is that it essentially is meant to mimic a rainstorm, in which an influx of cooler water is a feature. Makes sense. Weather conditions are such an important part of the life cycle of our fishes.

Still others attempt to simulate a "dry spell" by allowing the water quality to "degrade" somewhat (what exactly that means is open to interpretation!), while simultaneously increasing the aquarium temperature a degree or two. This is followed by a water exchange with softer water (ie; pure RO/DI), and resetting the tank temp to the tank's normal range of parameters.

The "variation" I have heard is to do the above procedure, accompanied by an increase in current via a filter return or powerhead, which simulates the increased water volume/flow brought on by the influx of "rain."

Clever.

Many breeders will fast their fishes a few days, followed by a big binge of food after the temperature drop, apparently simulating the increased amount of food in the native waters when rains come.

Still other hobbyists will reduce the pH of their aquarium water to stimulate breeding. And I suppose the rationale behind this is once again to simulate an influx of water from rain or other external sources...

Weather, once again.

And another trick I hear from my Cory breeder friends from time to time is the idea of tossing in a few alder cones into the tank/vessel where their breeders' eggs are incubating.

This decades-old practice is justified by the assertion that the alder cones possess some type of anti-fungal properties...not entirely off base with some of the scientific research we've found about the allegedly anti-microbial/antifungal properties of catappa leaves and such...

And of course, I hear/read of recommendations to use the aforementioned catappa leaves, oak leaves, and Magnolia leaves for just this purpose...

Interesting. 

Okay, cool.

Not really earth-shattering; however, it got me thinking about the whole idea of environmental manipulations as part of the routine "operation" of our botanical-mehtod aquariums.....Should we create true seasonal variations for our aquariums as part of our regular practice- not just when trying to spawn fishes? I mean, changing up lighting duration, intensity, angles, colors, increasing/decreasing water levels or flow?

With all of the high tech LED lighting systems, electronically controlled pumps; even advanced heaters- we can vary environmental conditions to mimic what occurs in our fishes' natural habitats during seasonal changes as never before. I think it would be very interesting to see what kinds of results we could get with our fishes if we went further into seasonal environmental manipulations than we have been able to before.

And of course, if we look at the natural habitats where many of our fishes originate, we see these seasonal changes having huge impact on the aquatic ecosystems. In The Amazon, for example, the high water season runs December through April.

And during the flooding season, the average temperature is 86 degrees F, around 12 degrees cooler than the dry season. And during the wet season, the streams and rivers can be between 6-7 meters higher on the average than they are during the dry season! 

And of course, there are more fruits, flowers, and insects during this time of year- important food items for many species of fishes.

And the dry season? Well, that obviously means lower water levels, higher temperatures, and abundance of fishes, most engaging in spawning activity. 

Mud and algal growth on plants, rocks, submerged trees, etc. is quite abundant in these waters at various times of the year. Mud and detritus are transported via the overflowing rivers into flooded areas, and contribute to the forest leaf litter and other botanical materials, coming nutrient sources which contribute to the growth of this epiphytic algae. 

During the lower water periods, this "organic layer" helps compensate for the shortage of other food sources. When the water is at a high period and the forests are inundated, many terrestrial insects fall into the water and are consumed by fishes. In general, insects- both terrestrial and aquatic, support a large community of fishes.

So, it goes without saying that the importance of insects and fruits- which are essentially derived from the flooded forests, are reduced during the dry season when fishes are confined to open water and feed on different materials. 

So I wonder...is part of the key to successfully conditioning and breeding some of the fishes found in these habitats altering their diets to mimic the seasonal importance/scarcity of various food items? In other words, feeding more insects at one time of the year, and perhaps allowing fishes to graze on detritus and biocover at other times?

And then, there are those fishes whose life cycle is intimately tied into the seasonal changes.

The killifishes.

Any annual or semi-annual killifish species enthusiast will tell you a dozen ways to dry-incubate eggs; again, a beautiful simulation of what happens in Nature...So much of the idea can be applicable to other areas of aquarium practice, right? 

Yeah... I think so.

It's pretty clear that factors such as the air, water and even soil temperatures, atmospheric humidity, the water level, the local winds as well as climatic variables have profound influence on the life cycle and reproductive behavior on the fishes that reside in these dynamic tropical environments! 

In my "Urban Igapo" experiments, we get to see a little microcosm of this whole seasonal process and the influences of "weather."

And of course, all of this ties into the intimate relationship between land and water, doesn't it?

There's been a fair amount of research and speculation by both scientists and hobbyists about the processes which occur when terrestrial materials like leaves and botanical items enter aquatic environments, and most of it is based upon field observations.

As hobbyists, we have a unique opportunity to observe firsthand the impact and affects of this material in our own aquariums! I love this aspect of our "practice", as it creates really interesting possibilities to embrace and create more naturally-functioning systems, while possibly even "validating" the field work done by scientists!

And of course, there are a lot of interesting bits of information that we can interpret from Nature when planning, creating, and operating our aquariums.

It goes without saying that there are implications for both the biology and chemistry of the aquatic habitats when leaves and other botanical materials enter them. Many of these are things that we as hobbyists observe every day in our aquariums!

Example?

A lab study I came upon found out that, when leaves are saturated in water, biofilm is at it's peak when other nutrients (i.e.; nitrate, phosphate, etc.) tested at their lowest limits. This is interesting to me, because it seems that, in our botanical method aquariums, biofilms tend to occur early on, when one would assume that these compounds are at their highest concentrations, right? And biofilms are essentially the byproduct of bacterial colonization, meaning that there must be a lot of "food" for the bacteria at some point if there is a lot of biofilm, right?

More questions...

Does this imply that the biofilms arrive on the scene and peak out really quickly; an indication that there is actually less nutrient in the water? Is the nutrient bound up in the biofilms? And when our fishes and other animals consume them, does this provide a significant source of sustenance for them?

Hmm...?

Oh, and here is another interesting observation:

When leaves fall into streams, field studies have shown that their nitrogen content typically will increase. Why is this important? Scientists see this as evidence of microbial colonization, which is correlated by a measured increase in oxygen consumption. This is interesting to me, because the rare "disasters" that we see in our tanks (when we do see them, of course, which fortunately isn't very often at all)- are usually caused by the hobbyist adding a really large quantity of leaves at once, resulting in the fishes gasping at the surface- a sign of...oxygen depletion?

Makes sense, right? 

These are interesting clues about the process of decomposition of leaves when they enter into our aquatic ecosystems. They have implications for our use of botanicals and the way we manage our aquariums. I think that the simple fact that pH and oxygen tend to go down quickly when leaves are  initially submerged in pure water during lab tests gives us an idea as to what to expect.

A lot of the initial environmental changes will happen rather rapidly, and then stabilize over time. Which of course, leads me to conclude that the development of sufficient populations of organisms to process the incoming botanical load is a critical part of the establishment of our botanical-method aquariums.

Fungal populations are as important in the process of breaking down leaves and botanical materials in water as are higher organisms, like insects and crustaceans, which function as "shredders." The “shredders” – the animals which feed upon the materials that fall into the streams, process this stuff into what scientists call “fine particulate organic matter.”

And that's where fungi and other microorganisms  make use of the leaves and materials, processing them into fine sediments. Allochthonous material can also include dissolved organic matter (DOM) carried into streams and re-distributed by water movement.

And the process happens surprisingly quickly.

In studies carried out in tropical  rainforests in Venezuela, decomposition rates were really fast, with 50% of leaf mass lost in less than 10 days! Interesting, but is it tremendously surprising to us as botanical-method aquarium enthusiasts? I mean, we see leaves begin to soften and break down in a matter of a couple of weeks- with complete breakdown happening typically in a month or so for many leaves.

And biofilms, fungi, and algae are still found in our aquariums in significant quantities throughout the process.

So, what's this all mean? What are the implications for aquariums? 

I think it means that we need to continue to foster the biological diversity of animals in our aquariums- embracing life at all levels- from bacteria to fungi to crustaceans to worms, and ultimately, our fishes...All forming the basis of a closed ecosystem, and perhaps a "food web" of sorts for our little aquatic microcosms. It's a very interesting  concept- a fascinating field for research for aquarists, and we all have the opportunity to participate in this on a most intimate level by simply observing what's happening in our aquariums every day!

We've talked about this very topic many times right here over the years, haven't we? I can't let it go.

Bioversity is interesting enough, but when you factor in seasonal changes and cycles, it becomes an almost "foundational" component for a new way of running our botanical-style aquariums.

Consider this:

The wet season in The Amazon runs from November to June. And it rains almost every day.

And what's really interesting is that the surrounding Amazon rain forest is estimated by some scientists to create as much as 50% of its own precipitation! It does this via the humidity present in the forest itself, from the water vapor present on plant leaves- which contributes to the formation of rain clouds.

Yeah, trees in the Amazon release enough moisture through photosynthesis to create low-level clouds and literally generate rain, according to a recent study published in the Proceedings of the National Academy of Sciences (U.S.)!

That's crazy.

But it makes a lot of sense, right?

Okay, that's a cool "cocktail party sound bite" and all, but what happens to the (aquatic) environment in which our fishes live in when it rains?

Well, for one thing, rain performs the dual function of diluting organics, while transporting more nutrient and materials across the ecosystem. What happens in many of the regions of Amazonia - and likewise, in many tropical locales worldwide-is the evolution of some of our most compelling environmental niches...

We've literally scratched the surface, and the opportunity to apply what we know about the climates and seasonal changes which occur where our fishes originate, and to incorporate, on a broader scale, the practices which our Corydoras-enthusiast friends employ on all sorts of fishes!

So much to learn, experiment with, and execute on.

Stay fascinated. Stay intrigued. Stay observant. Stay creative. Stay astute...

And Stay Wet.

 

Scott Fellman

Tannin Aquatics 

 

 


Scott Fellman
Scott Fellman

Author



Leave a comment